人工智能的窘境:对话系统

1、To C艰难、To B突破:当前2C的产品全部没有达到用户的预期,智能助理看似比专业领域的AI更简单,但实际上恰恰相反。打败柯洁的围棋AI好做,通用的日常任务助理如订餐、行程安排却难做。这不是商业模式的选择,而是技术上的限制:To B,特别是限定领域的产品,封闭不容易发挥跑题,而且数据比较充分,相对To C领域的产品更加可行。

2、身着皇帝新衣的人工智能:不管是Sophia还是酒店银行的大堂机器人,都是带喇叭的木偶,他们回复的内容要么是人工撰写好,然后利用语音合成输出,要么是真人远程录音。

3、大佬的观点:Yann LeCun和Hinton认为当前基于统计的机器学习技术来实现“人工智能效果”是行不通的。因为主流的基于统计的机器学习特别是深度学习,是通过大量的案例对文本的特征进行归类,来实现语义识别的效果,这种做法只对现象进行统计和归纳,没有对原因进行推理,形同“罗素鸡”。

4、人工智能的现状:智能助理依然智障,大部分To B的人造机器人都无法规模化,对话方面没有像Alpha Zero在围棋领域那样让人震撼的产品,没有商业上大规模崛起的迹象。

5、对话系统的现状和本质:对话系统中,用人工来撰写内容,或者使用模板回复,这是现在技术的现状。虽然每个对话系统背后的“对话管理”机制都不同,每家都有各种理解、各种设计,但是万变不离其宗——“填表/填槽”是对话系统的本质。剩下的无非是产品设计、工程实现、如何解决体验和规模化的困境这类问题。

6、对话的黑箱:对话智能的交互是一个黑箱,终端用户能感知到自己说出的话(输入)和机器人的回答(输出)。其核心是两点:听人话(识别)+讲人话(对话管理)

7、ASR和NLP:机器学习特别是深度学习带来的语音识别和自然语言理解主要解决的是识别人讲的话,其中的关键是“意图识别(intent)和实体提取(slot)”。由于机器学习领域的重要论文都是公开的,每家在自然语言识别这个领域的基础工具都差不多(intent和slot的准确率只有百分点的差异),因此听人话(识别)不是核心竞争力,讲人话才是(非控制类产品,任务型)

8、对话流程:

ASR:讲用户的语音转化为文字(深度学习)

NLU:意图识别和实体提取,如图中intent是“订机票”,slot是“明天”(深度学习)

填表:选择intent是“订机票”的这张表,将已知的slot“明天”填到表格中

“NLG”:表格中缺什么就回答什么,如表中缺“出发地”就问“从哪里出发”,缺“目的地”就问“你要到哪里去”,NLG打引号说明现在还没有真正意义上的自然语言生成,即真正思维的生成

TTS:把回复的文本合成语音播出去

9、不要用轮次来衡量产品水平:在任务型对话系统里,“轮数的产生”是由填表的次数决定的,以“轮数多少”来衡量产品水平的方法,在任务型对话里完全无意义。硬要有意义,应该是:在达到目的且不影响体验的前提下,轮次越少越好。

10、常识的重要性:很多推理都是基于世界知识(包括常识)的,缺乏常识就没有推理的基础。

11、对话系统更大的挑战不是NLU:深度学习在对话系统里面,能做到的只是识别出用户讲的那部分,回复用户的那部分是需要人来设计表格、编程实现的。在产品层面,一旦用户谈及到表以外的内容,就会出现人工智障的情形。每个人自身都是一个自然语言处理系统,各不相同,希望设计出一次就能处理所有场景问题的对话系统,目前都无解。

12、高维与低维:在信息丰富度上,语言是贫瘠的,思想要更加丰富,对话是思想从高维度向低维度的投影,用语言来描述思维,是用低维来表达高维。因此,为了让别人理解你的思维,你需要尽可能全面、多维度地描述并还原它。

13、利用常识进行交流:人与人之间的交流是基于双方的共识进行的,当人接收到低维度的语言之后,就会结合常识和自身经历来重构一个思维模型,通过这个模型来理解语言所代表的含义。当对话双方对一件事情的理解一致时不需要再讲,那些共识之外的东西才是沟通的重点。

14、无因果不智能:影响对话至少包含“明文(含上下文)”、“场景模型”和“世界模型”3部分,但是深度学习只能处理基于明文的信息,对于场景模型和世界模型的感知、生成、基于模型的推理都无能为力,这也是深度学习不能实现真正智能的本质原因,即不能进行因果推理。

15、DL+GOFAI:DL(Deep Learning)+GOFAI(Good Old Fashioned AI,专家系统)是当前一切智能产品的设计思路。

16、降低用户的期望:当前的闲聊机器人都是开放式的,导致用户会以为什么都可以聊,但实际上由于产品本身缺乏场景模型、对用户的常识一无所知,用户很快就会碰壁并丧失兴趣。因此,在选择产品的Domain时,尽量远离那些严重依赖世界模型和常识推理才能进行对话的场景,并且不要鼓励用户期望对话系统能够输出很多有价值的话。

17、对话系统的核心价值:AI的To C终极产品是智能助理,我们需要的是对话系统后面的思考能力、解决问题的能力,用来进一步替代用户的重复思考,而交互本身不是核心,它背后搭载的内容才是。技术不是对话智能类产品的壁垒,数据(非训练数据,而是服务数据、常识数据等)和设计才是。

PM需要站在人文和技术的十字路口来设计产品
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容