[ML] 性能评估指标2---ROC-AUC

1. ROC曲线的横纵坐标分别是什么?

roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。

ROC曲线的横轴:
负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例;(1-Specificity)
预测为正样本但是实际为负样本的数目占所有负样本的数目的比例
ROC 纵轴:
真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率)
预测为正样本实际也为正样本的数目 占 所有正样本数目的比例

ROC曲线是显示Classification模型真正率和假正率之间折中的一种图形化方法。

解读ROC图的一些概念定义::
真正(True Positive , TP)被模型预测为正的正样本;
假负(False Negative , FN)被模型预测为负的正样本;
假正(False Positive , FP)被模型预测为正的负样本;
真负(True Negative , TN)被模型预测为负的负样本。

真正率(True Positive Rate , TPR)或灵敏度(sensitivity)
TPR = TP /(TP + FN) (正样本预测结果数 / 正样本实际数)
假负率(False Negative Rate , FNR)
FNR = FN /(TP + FN) (被预测为负的正样本结果数 / 正样本实际数 )
假正率(False Positive Rate , FPR)
FPR = FP /(FP + TN) (被预测为正的负样本结果数 /负样本实际数)
真负率(True Negative Rate , TNR)或特指度(specificity)
TNR = TN /(TN + FP) (负样本预测结果数 / 负样本实际数)

目标属性的被选中的那个期望值称作是“正”(positive)

2. AUC

在统计和机器学习中,常常用AUC来评估二分类模型的性能。AUC的全称是 area under the curve,即曲线下的面积。 通常这里的曲线指的是受试者操作曲线(Receiver operating characteristic, ROC)。 相比于准确率、召回率、F1值等依赖于判决阈值的评估指标,AUC则没有这个问题。

一个关于AUC的很有趣的性质是,它和Wilcoxon-Mann-Witney Test是等价的。Wilcoxon-Mann-Witney Test就是测试任意给一个正类样本和一个负类样本,正类样本的score有多大的概率大于负类样本的score。

计算方法:https://blog.csdn.net/pzy20062141/article/details/48711355

深入了解AUC的博客:https://tracholar.github.io/machine-learning/2018/01/26/auc.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容