互联网运营数据指标与可视化监控

运营数据的获得,需要在应用程序中大量埋点采集数据,从数据库、日志和其他第三方采集数据,对数据清洗、转换、存储,利用SQL进行数据统计、汇总、分析,才能最后得到需要的运营数据报告。而这一切,都需要大数据平台的支持。

互联网运营常用数据指标

不同的互联网行业关注不同的运营数据,细化来看,复杂的互联网产品关注的运营指标成百上千。但是有一些指标是我们最常用的,这些指标基本反映了运营的核心状态。

1. 新增用户数

新增用户数是网站增长性的关键指标,指新增加的访问网站的用户数(或者新下载App的用户数),对于一个处于爆发期的网站,新增用户数会在短期内出现倍增的走势,是网站的战略机遇期,很多大型网站都经历过一个甚至多个短期内用户暴增的阶段。新增用户数有日新增用户数、周新增用户数、月新增用户数等几种统计口径。

2. 用户留存率

新增的用户并不一定总是对网站(App)满意,在使用网站(App)后感到不满意,可能会注销账户(卸载App),这些辛苦获取来的用户就流失掉了。网站把经过一段时间依然没有流失的用户称作留存用户,留存用户数比当期新增用户数就是用户留存率。

用户留存率 = 留存用户数 / 当期新增用户数

计算留存有时间窗口,即和当期数据比,3天前新增用户留存的,称作3日留存;相应的,还有5日留存、7日留存等。新增用户可以通过广告、促销、病毒营销等手段获取,但是要让用户留下来,就必须要使产品有实打实的价值。用户留存率是反映用户体验和产品价值的一个重要指标,一般说来,3日留存率能做到40%以上就算不错了。和用户留存率对应的是用户流失率。

用户流失率 = 1 - 用户留存率

3. 活跃用户数

用户下载注册,但是很少打开产品,表示产品缺乏黏性和吸引力。活跃用户数表示打开使用产品的用户数,根据统计口径不同,有日活跃用户数、月活跃用户数等。提升活跃是网站运营的重要目标,各类App常用推送优惠促销消息给用户的手段促使用户打开产品。

4. PV

打开产品就算活跃,打开以后是否频繁操作,就用PV这个指标衡量,用户每次点击,每个页面跳转,被称为一个PV(Page View)。PV是网页访问统计的重要指标,在移动App上,需要进行一些变通来进行统计。

5. GMV

GMV即成交总金额(Gross Merchandise Volume),是电商网站统计营业额(流水)、反映网站营收能力的重要指标。和GMV配合使用的还有订单量(用户下单总量)、客单价(单个订单的平均价格)等。

6. 转化率

转化率是指在电商网站产生购买行为的用户与访问用户之比。

转化率 = 有购买行为的用户数 / 总访问用户数

用户从进入网站(App)到最后购买成功,可能需要经过复杂的访问路径,每个环节都有可能会离开:进入首页想了想没什么要买的,然后离开;搜索结果看了看不想买,然后离开;进入商品详情页面,看看评价、看看图片、看看价格,然后离开;放入购物车后又想了想自己的钱包,然后离开;支付的时候发现不支持自己喜欢的支付方式,然后离开…一个用户从进入网站到支付,完成一笔真正的消费,中间会有很大概率流失,网站必须要想尽各种办法:个性化推荐、打折促销、免运费、送红包、分期支付,以留住用户,提高转化率。

以上是一些具有普适性的网站运营数据指标,具体到不同的网站根据自身特点,会有自己的指标。比如百度可能会关注“广告点击率”这样的指标,游戏公司可能会关注“付费玩家数”这样的指标。每个产品都应该根据自身特点寻找能够反映自身运营状况的数据指标。

为了便于分析决策,这些指标通常会以图表的方式展示,即数据可视化。

数据可视化图表与数据监控

数据以图表方式展示,可以更直观展示和发现数据的规律,互联网运营常用可视化图表有如下几种。

1. 折线图

折线图是用的最多的可视化图表之一,通常横轴为时间,用于展示在时间维度上的数据变化规律,正向指标(比如日活跃用户数)斜率向上,负向指标(比如用户流失率)斜率向下,都表示网站运营日趋良好,公司发展欣欣向荣。

image

2. 散点图

数据分析的时候,散点图可以有效帮助分析师快速发现数据分布上的规律与趋势,可谓肉眼聚类算法。

image

3. 热力图

热力图用以分析网站页面被用户访问的热点区域,以更好进行页面布局和视觉展示。

image

在地图上展示的热力图则表示了该地区的拥堵和聚集状态,方便用户进行出行规划。

image

4. 漏斗图

漏斗图可谓是网站数据分析中最重要的图表,表示在用户的整个访问路径中每一步的转化率。当重要的营收指标(GMV、利润、订单量)发生异常的时候,就必须要对整个的漏斗图进行分析,判断是网站的入口流量发生了问题,还是中间某一步的转化发生了问题;是内容的问题还是系统的问题,需要逐个进行分析排查。除了发现提升网站运营效率的关键点与方法,分析找出异常问题的根源也是数据分析最重要的工作之一。

image

此外还有柱状图、饼图等,也经常用于数据分析和展示。可视化图形在数据分析时可以帮助分析师更准确、更快速做出趋势预判并发现问题,在汇报工作时使用图表更有说服力,决策时也更有依据和信心。俗话说得好,“一图胜千言”,多掌握一些图表技巧可以使工作中很多事情事半功倍。

以上示例用的图表都来自于ECharts。ECharts百度开源的一个前端可视化图表组件,使用这个组件,只需要几行代码,就可以将运营数据以炫酷的方式可视化展示出来。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356

推荐阅读更多精彩内容