89 Gray Code 格雷编码
Description:
The gray code is a binary numeral system where two successive values differ in only one bit.
Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
Example:
Example 1:
Input: 2
Output: [0,1,3,2]
Explanation:
00 - 0
01 - 1
11 - 3
10 - 2
For a given n, a gray code sequence may not be uniquely defined.
For example, [0,2,3,1] is also a valid gray code sequence.
00 - 0
10 - 2
11 - 3
01 - 1
Example 2:
Input: 0
Output: [0]
Explanation: We define the gray code sequence to begin with 0.
A gray code sequence of n has size = 2n, which for n = 0 the size is 2^0 = 1.
Therefore, for n = 0 the gray code sequence is [0].
题目描述:
格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。
给定一个代表编码总位数的非负整数 n,打印其格雷编码序列。即使有多个不同答案,你也只需要返回其中一种。
格雷编码序列必须以 0 开头。
示例 :
示例 1:
输入: 2
输出: [0,1,3,2]
解释:
00 - 0
01 - 1
11 - 3
10 - 2
对于给定的 n,其格雷编码序列并不唯一。
例如,[0,2,3,1] 也是一个有效的格雷编码序列。
00 - 0
10 - 2
11 - 3
01 - 1
示例 2:
输入: 0
输出: [0]
解释: 我们定义格雷编码序列必须以 0 开头。
给定编码总位数为 n 的格雷编码序列,其长度为 2n。当 n = 0 时,长度为 2^0 = 1。
因此,当 n = 0 时,其格雷编码序列为 [0]。
思路:
格雷码生成方式 i ^ (i >> 1)
时间复杂度O(2 ^ n), 空间复杂度O(1)
代码:
C++:
class Solution
{
public:
vector<int> grayCode(int n)
{
vector<int> result((int)pow(2, n), 0);
for (int i = 0; i < 1 << n; i++) result[i] = i ^ i >> 1;
return result;
}
};
Java:
class Solution {
public List<Integer> grayCode(int n) {
List<Integer> result = new ArrayList<>((int)Math.pow(2, n));
for (int i = 0; i < 1 << n; i++) result.add(i ^ i >> 1);
return result;
}
}
Python:
class Solution:
def grayCode(self, n: int) -> List[int]:
return list(i ^ i >> 1 for i in range(1 << n))