应用场景-修路问题
看一个应用场景和问题
有胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
思路: 将10条边,连接即可,但是总的里程数不是最小.
正确的思路,就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少.
最小生成树
修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST。
- 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
- N个顶点,一定有N-1条边
- 包含全部顶点
- N-1条边都在图中
举例说明(如图:)
求最小生成树的算法主要是普里姆�算法和克鲁斯卡尔算法
如图
普利姆算法
普里姆算法介绍
普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
普利姆的算法如下:
设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
通过代码,比较好理解.
代码
public class PrimAlgorithm {
public static void main(String[] args) {
//测试看看图是否创建ok
char[] data = new char[]{'A','B','C','D','E','F','G'};
int verxs = data.length;
//邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
int [][]weight=new int[][]{
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000},};
//创建MGraph对象
MGraph graph = new MGraph(verxs);
//创建一个MinTree对象
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
//输出
minTree.showGraph(graph);
//测试普利姆算法
minTree.prim(graph, 1);//
}
}
//创建最小生成树->村庄的图
class MinTree {
//创建图的邻接矩阵
/**
*
* @param graph 图对象
* @param verxs 图对应的顶点个数
* @param data 图的各个顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
int i, j;
for(i = 0; i < verxs; i++) {//顶点
graph.data[i] = data[i];
for(j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
//显示图的邻接矩阵
public void showGraph(MGraph graph) {
for(int[] link: graph.weight) {
System.out.println(Arrays.toString(link));
}
}
//编写prim算法,得到最小生成树
/**
*
* @param graph 图
* @param v 表示从图的第几个顶点开始生成'A'->0 'B'->1...
*/
public void prim(MGraph graph, int v) {
//visited[] 标记结点(顶点)是否被访问过
int visited[] = new int[graph.verxs];
//visited[] 默认元素的值都是0, 表示没有访问过
// for(int i =0; i <graph.verxs; i++) {
// visited[i] = 0;
// }
//把当前这个结点标记为已访问
visited[v] = 1;
//h1 和 h2 记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000; //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
for(int k = 1; k < graph.verxs; k++) {//因为有 graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边
//这个是确定每一次生成的子图 ,和哪个结点的距离最近
for(int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
for(int j = 0; j< graph.verxs;j++) {//j结点表示还没有访问过的结点
if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
//替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
//找到一条边是最小
System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
//将当前这个结点标记为已经访问
visited[h2] = 1;
//minWeight 重新设置为最大值 10000
minWeight = 10000;
}
}
}
class MGraph {
int verxs; //表示图的节点个数
char[] data;//存放结点数据
int[][] weight; //存放边,就是我们的邻接矩阵
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}
结果: