普利姆算法解决最小生成树问题(修路问题)

应用场景-修路问题

看一个应用场景和问题

有胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
思路: 将10条边,连接即可,但是总的里程数不是最小.

正确的思路,就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少. 

最小生成树

修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST。

  1. 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
  2. N个顶点,一定有N-1条边
  3. 包含全部顶点
  4. N-1条边都在图中

举例说明(如图:)

求最小生成树的算法主要是普里姆�算法和克鲁斯卡尔算法
如图


普利姆算法

普里姆算法介绍

普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
普利姆的算法如下:

设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合

若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1

若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1

重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边


image.png

通过代码,比较好理解.

代码

public class PrimAlgorithm {

    public static void main(String[] args) {
        //测试看看图是否创建ok
        char[] data = new char[]{'A','B','C','D','E','F','G'};
        int verxs = data.length;
        //邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
        int [][]weight=new int[][]{
            {10000,5,7,10000,10000,10000,2},
            {5,10000,10000,9,10000,10000,3},
            {7,10000,10000,10000,8,10000,10000},
            {10000,9,10000,10000,10000,4,10000},
            {10000,10000,8,10000,10000,5,4},
            {10000,10000,10000,4,5,10000,6},
            {2,3,10000,10000,4,6,10000},};
            
        //创建MGraph对象
        MGraph graph = new MGraph(verxs);
        //创建一个MinTree对象
        MinTree minTree = new MinTree();
        minTree.createGraph(graph, verxs, data, weight);
        //输出
        minTree.showGraph(graph);
        //测试普利姆算法
        minTree.prim(graph, 1);// 
    }

}

//创建最小生成树->村庄的图
class MinTree {
    //创建图的邻接矩阵
    /**
     * 
     * @param graph 图对象
     * @param verxs 图对应的顶点个数
     * @param data 图的各个顶点的值
     * @param weight 图的邻接矩阵
     */
    public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
        int i, j;
        for(i = 0; i < verxs; i++) {//顶点
            graph.data[i] = data[i];
            for(j = 0; j < verxs; j++) {
                graph.weight[i][j] = weight[i][j];
            }
        }
    }
    
    //显示图的邻接矩阵
    public void showGraph(MGraph graph) {
        for(int[] link: graph.weight) {
            System.out.println(Arrays.toString(link));
        }
    }
    
    //编写prim算法,得到最小生成树
    /**
     * 
     * @param graph 图
     * @param v 表示从图的第几个顶点开始生成'A'->0 'B'->1...
     */
    public void prim(MGraph graph, int v) {
        //visited[] 标记结点(顶点)是否被访问过
        int visited[] = new int[graph.verxs];
        //visited[] 默认元素的值都是0, 表示没有访问过
//      for(int i =0; i <graph.verxs; i++) {
//          visited[i] = 0;
//      }
        
        //把当前这个结点标记为已访问
        visited[v] = 1;
        //h1 和 h2 记录两个顶点的下标
        int h1 = -1;
        int h2 = -1;
        int minWeight = 10000; //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
        for(int k = 1; k < graph.verxs; k++) {//因为有 graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边
            
            //这个是确定每一次生成的子图 ,和哪个结点的距离最近
            for(int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
                for(int j = 0; j< graph.verxs;j++) {//j结点表示还没有访问过的结点
                    if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
                        //替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
                        minWeight = graph.weight[i][j];
                        h1 = i;
                        h2 = j;
                    }
                }
            }
            //找到一条边是最小
            System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
            //将当前这个结点标记为已经访问
            visited[h2] = 1;
            //minWeight 重新设置为最大值 10000
            minWeight = 10000;
        }
        
    }
}

class MGraph {
    int verxs; //表示图的节点个数
    char[] data;//存放结点数据
    int[][] weight; //存放边,就是我们的邻接矩阵
    
    public MGraph(int verxs) {
        this.verxs = verxs;
        data = new char[verxs];
        weight = new int[verxs][verxs];
    }
}

结果:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容