氨基酸三维曲率计算公式

已知氨基酸X,Y,Z坐标

1. 利用切线,做小量近似,展开足够阶数

在三维坐标系中,对于两切线近似组成的平面,切线的方向向量为(1,\frac{dy}{dx},\frac{dz}{dx})

\cos \Delta \theta=\left(1, \frac{d y}{d x}, \frac{d z}{d x}\right)\left(1, \frac{d y}{d x}+\Delta\left(\frac{d y}{d x}\right), \frac{d z}{d x}+\Delta\left(\frac{d z}{d x}\right)\right) / \left (\bigg |\left(1, \frac{d y}{d x}, \frac{d z}{d x}\right)\bigg |\left|\left(1, \frac{d y}{d x}+\Delta\left(\frac{d y}{d x}\right), \frac{d z}{d x}+\Delta\left(\frac{d z}{d x}\right)\right)\right|\right)

设:
\begin{array}{l} \cos \Delta \theta=1-\Delta \theta^{2} / 2 \\ \Delta s=\sqrt{\Delta x^{2}+\Delta y^{2}+\Delta z^{2}} \end{array}
上式就等于:
\begin{array}{l} \left(1+\frac{d y}{d x}\left(\frac{d y}{d x}+\Delta\left(\frac{d y}{d x}\right)\right)+\frac{d z}{d x}\left(\frac{d z}{d x}+\Delta\left(\frac{d z}{d x}\right)\right)\right) /\left(\sqrt{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}} \sqrt{1+\left(\frac{d y}{d x}+\Delta \frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}+\Delta \frac{d z}{d x}\right)^{2}}\right) \end{array}
小量展开:

\begin{array}{l} 1+\frac{d y}{d x}\left(\frac{d y}{d x}+\Delta\left(\frac{d y}{d x}\right)\right)+\frac{d z}{d x}\left(\frac{d z}{d x}+\Delta\left(\frac{d z}{d x}\right)\right)=1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}+\frac{1}{2} \Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)\\ \sqrt{1+\left(\frac{d y}{d x}+\Delta \frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}+\Delta \frac{d z}{d x}\right)^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}+\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)+\left(\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}\right)} \end{array}

其中:
1 / \sqrt{1+\left(\frac{d y}{d x}+\Delta \frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}+\Delta \frac{d z}{d x}\right)^{2}} =\frac{1}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}}}\left\{1-\frac{1}{2} \frac{\bigg [\left.\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)+\left(\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}\right)\right]}{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}}+ \frac{3}{8}\left(\frac{\left.\left(\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right.\right)\right)}{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}}\right)^{2}\right\}

并且:
\begin{array}{l} \begin{array}{l} 1-\Delta \theta^{2} / 2 \\ =\left[1+\frac{1}{2} \frac{\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)}{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}}\right] \end{array}\\ \left\{1-\frac{1}{2} \frac{\left[\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)+\left(\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}\right)\right]}{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}}+\frac{3}{8} \frac{\left(\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)\right)^{2}}{\left(1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)^{2}}\right\}\\ =1-\frac{1}{4}\left(\frac{\left.\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)\right)^{2}}{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}}\right)^{-\frac{1}{2}} \frac{\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}}{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}}+\frac{3}{8} \frac{\left(\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)\right)^{2}}{\left(1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)^{2}}\\ =1-\frac{1}{2} \frac{\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}}{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}}+\frac{1}{8} \frac{\left(\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)\right)^{2}}{\left(1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)^{2}} \end{array}
故:
\begin{array}{l} \Delta \theta^{2}=\frac{\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}}{1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}}-\frac{1}{4} \frac{\left(\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)\right)^{2}}{\left(1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)^{2}}\\ =\frac{\left(\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}\right)\left(1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)-\frac{1}{4}\left(\Delta\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)\right)^{2}}{\left(1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)^{2}}\\ =\frac{\left(\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}\right)+\left(\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}\right)\left(\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)-\left(\frac{d y}{d x} \Delta \frac{d y}{d x}+\frac{d z}{d x} \Delta \frac{d z}{d x}\right)^{2}}{\left(1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)^{2}}\\ =\frac{\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}+\left(\Delta \frac{d y}{d x}\right)^{2}\left(\frac{d z}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}\left(\frac{d y}{d x}\right)^{2}-2\left(\frac{d y}{d x} \Delta \frac{d y}{d x}\right)\left(\frac{d z}{d x} \Delta \frac{d z}{d x}\right)}{\left(1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)^{2}}\\ =\frac{\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}+\left(\left(\Delta \frac{d y}{d x}\right)\left(\frac{d z}{d x}\right)-\left(\Delta \frac{d z}{d x}\right)\left(\frac{d y}{d x}\right)\right)^{2}}{\left(1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)^{2}} \end{array}

可得:
\begin{array}{l} \Delta \frac{d y}{d x} / \Delta t=\frac{y^{\prime \prime} x^{\prime}-x^{\prime \prime} y^{\prime}}{x^{\prime 2}}\\ \end{array}

\begin{array}{l} \frac{\Delta \theta}{\Delta s}=\sqrt{\frac{\left(\Delta \frac{d y}{d x}\right)^{2}+\left(\Delta \frac{d z}{d x}\right)^{2}+\left(\left(\Delta \frac{d y}{d x}\right)\left(\frac{d z}{d x}\right)-\left(\Delta \frac{d z}{d x}\right)\left(\frac{d y}{d x}\right)\right)^{2}}{\left(1+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d z}{d x}\right)^{2}\right)^{2}} / \sqrt{\Delta x^{2}+\Delta y^{2}+\Delta z^{2}}} \\ =\sqrt{\left(\frac{y^{\prime \prime} x^{\prime}-x^{\prime \prime} y^{\prime}}{x^{\prime 2}}\right)^{2}+\left(\frac{z^{\prime \prime} x^{\prime}-x^{\prime \prime} z^{\prime}}{x^{\prime 2}}\right)^{2}+\left(\left(\frac{y^{\prime \prime} x^{\prime}-x^{\prime \prime} y^{\prime}}{x^{\prime 2}}\right)\left(\frac{z^{\prime}}{x^{\prime}}\right)-\left(\frac{z^{\prime \prime} x^{\prime}-x^{\prime \prime} z^{\prime}}{x^{\prime 2}}\right)\left(\frac{y^{\prime}}{x^{\prime}}\right)\right)^{2}} /\left(\left(1+\left(\frac{y^{\prime}}{x^{\prime}}\right)^{2}+\left(\frac{z^{\prime}}{x^{\prime}}\right)^{2}\right)^{2}*\Delta s\right)\\ =\sqrt{\left(y^{\prime \prime} x^{\prime}-x^{\prime \prime} y^{\prime}\right)^{2}+\left(z^{\prime \prime} x^{\prime}-x^{\prime \prime} z^{\prime}\right)^{2}+\left(\left(y^{\prime \prime} x^{\prime}-x^{\prime \prime} y^{\prime}\right)\left(\frac{z^{\prime}}{x^{\prime}}\right)-\left(z^{\prime \prime} x^{\prime}-x^{\prime \prime} z^{\prime}\right)\left(\frac{y^{\prime}}{x^{\prime}}\right)\right)^{2}} /\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{3 / 2} \\ =\sqrt{\left(y^{\prime \prime} x^{\prime}-x^{\prime \prime} y^{\prime}\right)^{2}+\left(z^{\prime \prime} x^{\prime}-x^{\prime \prime} z^{\prime}\right)^{2}+\left(y^{\prime \prime} z^{\prime}-z^{\prime \prime} y^{\prime}\right)^{2}} /\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{3 / 2} \end{array}

2. 利用方向向量

d s=\sqrt{d x^{2}+d y^{2}+d z^{2}}, s^{\prime}=\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}, \frac{1}{R}=\frac{d \theta}{d s}=\frac{\theta^{\prime}}{s^{\prime}}

\begin{array}{l} \vec{a}=\left(\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}\right)=\left(\frac{x^{\prime}}{s^{\prime}}, \frac{y^{\prime}}{s^{\prime}}, \frac{z^{\prime}}{s^{\prime}}\right),|\vec{a}|=1,|d \vec{a}|=d \theta, \\ |d \vec{a}|=\left|d\left(\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}\right)\right|=\left|\left(d \frac{d x}{d s}, d \frac{d y}{d s}, d \frac{d z}{d s}\right)\right|=\sqrt{\left(d \frac{x^{\prime}}{s^{\prime}}\right)^{2}+\left(d \frac{y^{\prime}}{s^{\prime}}\right)^{2}+\left(d \frac{z^{\prime}}{s^{\prime}}\right)^{2}}, \\ \theta^{\prime}=\sqrt{\left(\frac{x^{\prime}}{s^{\prime}}\right)^{\prime 2}+\left(\frac{y^{\prime}}{s^{\prime}}\right)^{\prime 2}+\left(\frac{z^{\prime}}{s^{\prime}}\right)^{\prime 2}}, \\ \end{array}

可得:
\begin{array}{l} \left(\frac{x^{\prime}}{s^{\prime}}\right)^{\prime}=\frac{x^{\prime \prime} s^{\prime}-x^{\prime} s^{\prime \prime}}{s^{\prime 2}},\\ s^{\prime \prime}=\frac{2 s^{\prime} s^{\prime \prime}}{2 s^{\prime}}=\frac{\left(s^{\prime 2}\right)^{\prime}}{2 s^{\prime}}=\frac{\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{\prime}}{2 s^{\prime}}=\frac{x^{\prime} x^{\prime \prime}+y^{\prime} y^{\prime \prime}+z^{\prime} z^{\prime \prime}}{s^{\prime}},\\ \theta^{\prime}=\sqrt{\left(\frac{x^{\prime \prime} s^{\prime}-x^{\prime} s^{\prime \prime}}{s^{\prime 2}}\right)^{2}+\left(\frac{y^{\prime \prime} s^{\prime}-y^{\prime} s^{\prime \prime}}{s^{\prime 2}}\right)^{2}+\left(\frac{z^{\prime \prime} s^{\prime}-z^{\prime} s^{\prime \prime}}{s^{\prime 2}}\right)^{2}},\\ =\frac{\sqrt{\left(x^{\prime \prime} s^{\prime}-x^{\prime} s^{\prime \prime}\right)^{2}+\left(y^{\prime \prime} s^{\prime}-y^{\prime} s^{\prime \prime}\right)^{2}+\left(z^{\prime \prime} s^{\prime}-z^{\prime} s^{\prime \prime}\right)^{2}}}{s^{\prime 2}}\\ \left(x^{\prime \prime} s^{\prime 2}-x^{\prime} s^{\prime} s^{\prime \prime}\right)^{2}=s^{\prime 4} x^{\prime \prime 2}+x^{\prime 2}\left(s^{\prime} s^{\prime \prime}\right)^{2}-2 x^{\prime} x^{\prime \prime} s^{\prime 2}\left(s^{\prime} s^{\prime \prime}\right),\\ \theta^{\prime}=\frac{\sqrt{s^{\prime 2}\left(x^{\prime \prime 2}+x^{\prime \prime 2}+x^{\prime 2}\right)+\left(x^{\prime 2}+x^{\prime 2}+x^{\prime 2}\right) s^{\prime 2}-2 x\left(x^{\prime \prime}+x^{\prime} x^{\prime \prime}+x^{\prime} x^{\prime \prime}\right)\left(s^{\prime} s^{\prime \prime}\right)}}{s^{\prime 2}}\\ =\frac{\sqrt{\left.s^{\prime 2}\left(x^{\prime \prime 2}+x^{\prime \prime 2}+x^{\prime \prime 2}\right)+s^{\prime 2} s^{\prime 2}-2 s^{\prime} s^{\prime \prime}\left(s^{\prime} s^{\prime \prime}\right)\right)}}{s^{\prime 2}}\\ =\frac{\sqrt{s^{\prime 2}\left(x^{\prime \prime 2}+x^{\prime 2}+x^{\prime 2}\right)-\left(s^{\prime} s^{\prime \prime}\right)^{2}}}{s^{\prime 2}}\\ =\frac{\sqrt{s^{\prime 2}\left(x^{\prime \prime 2}+x^{\prime 2}+x^{\prime \prime 2}\right)-\left(x^{\prime} x^{\prime \prime}+y^{\prime} y^{\prime \prime}+z^{\prime} z^{\prime \prime}\right)^{2}}}{s^{\prime 2}} \end{array}
即最终结论:
\begin{array}{l} \theta^{\prime}=\frac{\sqrt{\left(x^{\prime \prime} y^{\prime}-y^{\prime \prime} x^{\prime}\right)^{2}+\left(y^{\prime \prime} z^{\prime}-z^{\prime \prime} y^{\prime}\right)+\left(z^{\prime \prime} x^{\prime}-x^{\prime \prime} z^{\prime}\right)^{2}}}{s^{\prime 2}} \\ \frac{1}{R}=\frac{d \theta}{d s}=\frac{\sqrt{\left(x^{\prime \prime} y^{\prime}-y^{\prime \prime} x^{\prime}\right)^{2}+\left(y^{\prime \prime} z^{\prime}-z^{\prime \prime} y^{\prime}\right)+\left(z^{\prime \prime} x^{\prime}-x^{\prime \prime} z^{\prime}\right)^{2}}}{s^{\prime 3}} \end{array}

for i in X_train:
    x = i[:,1].cpu()
    x1 = np.gradient(x)
    x2 = np.gradient(x1)
    y = i[:,2].cpu()
    y1 = np.gradient(y)
    y2 = np.gradient(y1)
    z = i[:,3].cpu()
    z1 = np.gradient(z)
    z2 = np.gradient(z1)
    r2 = np.sqrt((y1*z2-z1*y2)**2+(z1*x2-x1*z2)**2+(x1*y2-x2*y1)**2)/((np.sqrt(x1**2+y1**2+z1**2))**3)
# 直接莽
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355

推荐阅读更多精彩内容