2020-01-27

我处理它的方式,就是首先创建一个 Python 列表,它包含另一个列表,里面包含数据集中每个点的距离和分类。一旦填充完毕,我们就可以根据距离来排序列表,截取列表的前 K 个值,找到出现次数最多的,就找到了答案。

def k_nearest_neighbors(data, predict, k=3):
    if len(data) >= k:
        warnings.warn('K is set to a value less than total voting groups!')
        
    distances = []
    for group in data:
        for features in data[group]:
            euclidean_distance = sqrt( (features[0]-predict[0])**2 + (features[1]-predict[1])**2 )
            distances.append([euclidean_distance,group])

有一种方式来计算欧氏距离,最简洁的方式就是遵循定义。也就是说,使用 NumPy 会更快一点。由于 KNN 是一种机器学习的爆破方法,我们需要我们能得到的所有帮助。因此,我们可以将函数修改一点。一个选项是:

euclidean_distance = np.sqrt(np.sum((np.array(features)-np.array(predict))**2))
print(euclidean_distance)

这还是很清楚,我们刚刚使用了 NumPy 版本。NumPy 使用 C 优化,是个非常高效的库,很多时候允许我们计算更快的算术。也就是说,NumPy 实际上拥有大量的线性代数函数。例如,这是范数:

euclidean_distance = np.linalg.norm(np.array(features)-np.array(predict))
print(euclidean_distance)

欧式距离度量两个端点之间的线段长度。欧几里得范数度量向量的模。向量的模就是它的长度,这个是等价的。名称仅仅告诉你你所在的控件。

我打算使用后面那一个,但是我会遵循我的约定,使其易于拆解成代码。如果你不了解 NumPy 的内建功能,你需要去了解如何使用。

现在,for循环之外,我们得到了距离列表,它包含距离和分类的列表。我们打算对列表排序,之后截取前 K 个元素,选取下标 1,它就是分类。

votes = [i[1] for i in sorted(distances)[:k]]

上面,我们遍历了排序后的距离列表的每个列表。排序方法会(首先)基于列表中每个列表的第一个元素。第一个元素是距离,所以执行orted(distances)之后我们就按照从小到大的距离排序了列表。之后我们截取了列表的[:k],因为我们仅仅对前 K 个感兴趣。最后,在for循环的外层,我们选取了i[1],其中i就是列表中的列表,它包含[diatance, class](距离和分类的列表)。按照距离排序之后,我们无需再关心距离,只需要关心分类。

所以现在有三个候选分类了。我们需要寻找出现次数最多的分类。我们会使用 Python 标准库模块collections.Counter

vote_result = Counter(votes).most_common(1)[0][0]

Collections会寻找最常出现的元素。这里,我们想要一个最常出现的元素,但是你可以寻找前 3 个或者前x个。如果没有[0][0]这部分,你会得到[('r', 3)](元素和计数的元组的列表)。所以[0][0]会给我们元组的第一个元素。你看到的 3 是'r'的计数。

最后,返回预测结果,就完成了。完整的代码是:

def k_nearest_neighbors(data, predict, k=3):
    if len(data) >= k:
        warnings.warn('K is set to a value less than total voting groups!')
        
    distances = []
    for group in data:
        for features in data[group]:
            euclidean_distance = np.linalg.norm(np.array(features)-np.array(predict))
            distances.append([euclidean_distance,group])

    votes = [i[1] for i in sorted(distances)[:k]]
    vote_result = Counter(votes).most_common(1)[0][0]
    return vote_result

现在,如果我们打算基于我们之前所选的点,来做预测:

result = k_nearest_neighbors(dataset, new_features)
print(result)

非常肯定,我得到了r,这就是预期的值。让我们绘制它吧。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import warnings
from math import sqrt
from collections import Counter
style.use('fivethirtyeight')

def k_nearest_neighbors(data, predict, k=3):
    if len(data) >= k:
        warnings.warn('K is set to a value less than total voting groups!')
        
    distances = []
    for group in data:
        for features in data[group]:
            euclidean_distance = np.linalg.norm(np.array(features)-np.array(predict))
            distances.append([euclidean_distance,group])

    votes = [i[1] for i in sorted(distances)[:k]]
    vote_result = Counter(votes).most_common(1)[0][0]
    return vote_result

dataset = {'k':[[1,2],[2,3],[3,1]], 'r':[[6,5],[7,7],[8,6]]}
new_features = [5,7]
[[plt.scatter(ii[0],ii[1],s=100,color=i) for ii in dataset[i]] for i in dataset]
# same as:
##for i in dataset:
##    for ii in dataset[i]:
##        plt.scatter(ii[0],ii[1],s=100,color=i)
        
plt.scatter(new_features[0], new_features[1], s=100)

result = k_nearest_neighbors(dataset, new_features)
plt.scatter(new_features[0], new_features[1], s=100, color = result)  
plt.show()

你可以看到,我们添加了新的点5, 7,它分类为红色的点,符合预期。

这只是小规模的处理,但是如果我们处理乳腺肿瘤数据集呢?我们如何和 Sklearn 的 KNN 算法比较?下一个教程中,我们会将算法用于这个数据集。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容