2020 机器学习之Kmeans

machine_learning.jpg

K-means

k-means 是一种搜寻中心的无监督的算法。K-means 是一种迭代的不确定方法,所谓迭代,是指算法的步骤不断重复产生的每个簇都可以用以下的指标来进行评估。

  1. 簇的位置: 簇中心的坐标,k-means 初始化的时候随机选择一个点作为中心点,然后每个步骤迭代找到新的中心,在新的中心附近的点都相似,并被划分到同一个组
  2. 簇的半径: 簇内每个点到簇中心的距离的平均差
  3. 簇的规模: 簇内点的总数
  4. 簇的密度:簇的规模和簇的半径的比值

K-means 模型的评估

如何评估输出的簇的好坏呢?因为是无监督问题,无法给出如精度、召回率、准确率、F1 分数或其他类似指标的评估方法,我们将采用所谓轮廓系数来评估 Kmeans 的结果。轮廓系数的值介于-1 到 1。

  • 负值说明簇的半径大于簇之间的距离,也就是两个簇之间有重叠
  • 值越大,也就是越接近 1 表示聚类结果越好

轮廓系数

我们知道轮廓系数用于衡量 Kmean 模型的好坏,那么我们应该如何计算轮廓系数。
S_1 = \frac{y_i - x_i}{\max (x_i,y_i)}

  • x_i 表示在簇 C 里点 i 到簇内其他点距离的平均值
  • 然后计算 i 点到其他簇的所有点的距离平均值,选择其中最小值y_i

每个簇里所有点的轮廓系数的平均值可以用来衡量这个簇的质量,所有点的轮廓系数的平局值可以用来衡量聚类分簇的质量。

def get_random_data():
    x_1 = np.random.normal(loc=0.2,scale=0.2,size=(100,100))
    x_2 = np.random.normal(loc=0.9,scale=0.1,size=(100,100))
    #np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat()     
    x = np.r_[x_1,x_2]
    return x
x = get_random_data()
# plt.cla()
plt.figure()
plt.title("Generated Data")
plt.scatter(x[:,0],x[:,1])
plt.show()
print(x.shape)
屏幕快照 2020-01-11 下午9.57.05.png
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
def form_clusters(x,k):
    # k 是划分出的簇的个数
    no_clusters = k
    model = KMeans(n_clusters=no_clusters,init='random')
    model.fit(x)
    labels = model.labels_
#     print(labels)
    # 计算轮廓系数     
    sh_score = silhouette_score(x,labels)
    return sh_score
sh_scores = []
for i in range(1,5):
    sh_score = form_clusters(x,i+1)
    sh_scores.append(sh_score)
no_clusters = [i+1 for i in range(1,5)]
plt.figure(2)
plt.plot(no_clusters,sh_scores)
plt.title("Cluster Quality")
plt.xlabel("No of clusters k")
plt.ylabel("Sihouette Coefficient")
plt.show()
屏幕快照 2020-01-11 下午9.22.35.png

k-means 是一种迭代的算法,大致上步骤如下

  1. 从数据集中随机选择 k 个点作为簇的初始中心点
  2. 然后执行以下步骤直到收敛
    1. 将点分配给最近的簇中心,计算这个点和簇中心点的距离
    2. 基于本次迭代过程中分配的点重新计算簇中心
    3. 如果分配点和上一次迭代过程里的都一样,则算法收敛到一个最优解,退出循环。
wechat.jpeg
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354

推荐阅读更多精彩内容