[LeetCode](week12)312. Burst Balloons

(DP动态规划) Leetcode 312. Burst Balloons

第一次做动态规划的题目

题目

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.

Find the maximum coins you can collect by bursting the balloons wisely.

Note:

  • You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
  • 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

Example:

Input: [3,1,5,8]
Output: 167 
Explanation: nums = [3,1,5,8] --> [3,5,8] -->   [3,8]   -->  [8]  --> []
             coins =  3*1*5      +  3*5*8    +  1*3*8      + 1*8*1   = 167

题目解析与分析

题意

大概就是:有一排气球,每个标了数字,然后戳一个气球得到的奖励是左气球×该气球×右气球,当然如果左或右没有气球就乘1。问该以什么顺序戳气球得到的奖励最大

最笨的思路

枚举法:将所有的情况列举一遍。当有n个气球的时候,第一步我们有n种选择,第二步我们又有n-1个选择......显然全枚举的算法复杂度为O(N!),效率不敢恭维,因此这里就不实现——因为不可能过。

参阅

进一步想法

我们需要去考虑上面枚举法做了什么重复的计算。我们可以想到,给定一组气球,它所能获得的最大的奖励应该和前面已经被戳的气球无关——被戳过的气球只是在求和的时候累积上了而已。

对于给定k<n, 其可能的组合数有 C_n^k 种,我们可以把k(从1开始)的所有情况都记录在内存上,k+1就可以基于k进行计算,那么我们总共需要进行的计算就是
C_n^1+C_n^2+...+C_n^n
这种算法优于O(N!), 但仍然坏于O(2^N); 我们需要更优的算法

分治的想法

我们考虑用分治去思考这一道题。先是正常地考虑分治,我戳爆某个气球,可不可以把剩下的气球分成两堆呢?这是否可行的前提是两堆会不会互相干扰:答案是肯定的,在戳爆某个气球以后,左堆的最右气球会需要右堆的最左气球来进行计算。

这时候我们需要反向的思维:我们正向地想戳气球的过程,当然会导致两堆相互影响。那如果我们考虑的是在这一堆里最后戳爆的那个气球呢?假如A,B,C,D,E中我最后戳C, 那左堆(A,B)在戳的过程中显然会以C为右边界,而右堆(D,E)以C为左边界——这就实现了分治,两个子问题是相互不干扰的。

想一下为什么分治会更好,它少算了哪些步骤

具体的算法如下:

public int maxCoins(int[] iNums) {
    int[] nums = new int[iNums.length + 2];
    int n = 1;
    for (int x : iNums) if (x > 0) nums[n++] = x;
    nums[0] = nums[n++] = 1;


    int[][] memo = new int[n][n];
    return burst(memo, nums, 0, n - 1);
}

public int burst(int[][] memo, int[] nums, int left, int right) {
    if (left + 1 == right) return 0;
    if (memo[left][right] > 0) return memo[left][right];
    int ans = 0;
    for (int i = left + 1; i < right; ++i)
        ans = Math.max(ans, nums[left] * nums[i] * nums[right] 
        + burst(memo, nums, left, i) + burst(memo, nums, i, right));
    memo[left][right] = ans;
    return ans;
}
// 12 ms
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容

  • Description Given n balloons, indexed from 0 to n-1. Each...
    Nancyberry阅读 274评论 0 0
  • 今天爵士队主场以116比69狂剁来访的奇才队,净胜47分是爵士队本赛季新高,69分也创造了本赛季得分新低。此役过后...
    掌趣体育阅读 260评论 0 0
  • 人真的很多,一会不看就会有很多信息。正在想着一种方法,可以有效的吸收所有知识。 但我发现,大部分人,虽然有在学习,...
    把快乐带给你阅读 150评论 0 0
  • 冬天来了,住在我自己租的小房子里半夜都被冻醒了,洗澡的水已经不够用了,没太在意居然洗着洗着就没热水了,这个冬天还没...
    幸运星新阅读 195评论 0 0
  • “菜根”一词出自北宋学者汪信民的一句“咬得菜根,百事可做”,意思是一个人只要能适应清贫艰苦的生活,以后无论做什么事...
    MuSky_沐卿心阅读 5,448评论 0 34