TFRecord 统一数据格式

1.将输入数据保存为TFRecord格式

__author__ = 'ding'
'''
将数据保存为TFRecord格式
'''
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np

# 生成整数型的属性
def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

# 生成字符串型的属性
def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


mnist = input_data.read_data_sets('./path/to/mnist/data', dtype=tf.uint8, one_hot=True)
images = mnist.train.images
# 训练数据对应的正确答案,作为一个属性保存在TFRecord中
labels = mnist.train.labels
# 训练数据的图像分辨率,作为Example中的一个属性
pixels = images.shape[1]
num_examples = mnist.train.num_examples

# 输出文件的路径
filename = './path/to/output.tfrecords'
# 创建一个writer写TFRecord文件
writer = tf.python_io.TFRecordWriter(filename)
for index in range(num_examples):
    # 将图像矩阵转化成一个字符串
    image_raw = images[index].tostring()
    # 将一个样例转换成Example Protocol Buffer,并将所有信息写入这个数据结构
    example = tf.train.Example(features=tf.train.Features(feature={
        'pixels': _int64_feature(pixels),
        'label': _int64_feature(np.argmax(labels[index])),
        'image_raw':_bytes_feature(image_raw)
    }))

    # 将一个Example 写入TFRecord文件
    writer.write(example.SerializeToString())

writer.close()


在工程的/path/to目录下生成一个output.tfrecord文件,这个文件就是输入数据的TFRecord格式文件
此处注意 不要遗漏tf.train.Features后的s,为了不必要的错误,需要仔细核对(掉过坑,所以提醒。。)

2.读取TFRecord文件中的数据

__author__ = 'ding'
'''
读取TFRecord文件中的数据
'''
import tensorflow as tf

# 创建一个reader来读取TFRecord文件中的样例
reader = tf.TFRecordReader()

# 创建一个列队来维护输入文件列表
filename_queue = tf.train.string_input_producer(['./path/to/output.tfrecords'])
# 从文件中读取一个样例,也可以使用read_up_to函数一次读取多个样例
_,serialized_example = reader.read(filename_queue)

# 解析读入的一个样例,如果需要解析多个样例,也可以使用parse_example函数
features = tf.parse_single_example(
    serialized_example,
    features={
        # 解析方法与保存方法应该一致,避免报错
        # TensorFlow 有两种属性解析的方法,
        # tf.FixedLenGeature, 解析结果为一个Tensor
        # tf.VarLenFrature,解析结果为SparseTensor,用于稀疏处理
        'image_raw':tf.FixedLenFeature([],tf.string),
        'pixels':tf.FixedLenFeature([],tf.int64),
        'label':tf.FixedLenFeature([],tf.int64)
    })

# tf.decode_raw 可以将字符串解析成图像对应的像素数组
images = tf.decode_raw(features['image_raw'],tf.uint8)
labels = tf.cast(features['label'],tf.int32)
pixels = tf.cast(features['pixels'],tf.int32)

sess = tf.Session()
# 启用多线程处理
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess,coord=coord)

# 每次运行可以读取TFRecord文件中的一个样例,当所有样例读完之后,此样例中程序会在重头读取
for i in range(10):
    images,labels,pixels = sess.run([images,labels,pixels])
has invalid type <class 'numpy.ndarray'>, must be a string or Tensor
***原因:变量命名重复了
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容