654.最大二叉树
文字讲解:最大二叉树
视频讲解:又是构造二叉树,又有很多坑!
题设:给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:
- 二叉树的根是数组中的最大元素。
- 左子树是通过数组中最大值左边部分构造出的最大二叉树。
- 右子树是通过数组中最大值右边部分构造出的最大二叉树。
通过给定的数组构建最大二叉树,并且输出这个树的根节点。
public TreeNode constructMaximumBinaryTree(int[] nums) {
return constructMaximumBinaryTree1(nums, 0, nums.length);
}
public TreeNode constructMaximumBinaryTree1(int[] nums, int leftIndex, int rightIndex) {
if (rightIndex - leftIndex < 1) {// 没有元素了
return null;
}
if (rightIndex - leftIndex == 1) {// 只有一个元素
return new TreeNode(nums[leftIndex]);
}
int maxIndex = leftIndex;// 最大值所在位置
int maxVal = nums[maxIndex];// 最大值
for (int i = leftIndex + 1; i < rightIndex; i++) {
if (nums[i] > maxVal){
maxVal = nums[i];
maxIndex = i;
}
}
TreeNode root = new TreeNode(maxVal);
// 根据maxIndex划分左右子树
root.left = constructMaximumBinaryTree1(nums, leftIndex, maxIndex);
root.right = constructMaximumBinaryTree1(nums, maxIndex + 1, rightIndex);
return root;
}
617.合并二叉树
前言:这次是一起操作两个二叉树了,估计大家也没一起操作过两个二叉树,也不知道该如何一起操作,可以看视频先理解一下。优先掌握递归。
题目链接/文章讲解:合并二叉树
视频讲解:一起操作两个二叉树?有点懵!
题设:给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。
你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if (root1 == null) return root2;
if (root2 == null) return root1;
root1.val += root2.val;
root1.left = mergeTrees(root1.left,root2.left);
root1.right = mergeTrees(root1.right,root2.right);
return root1;
}
700.二叉搜索树中的搜索
前言:递归和迭代都可以掌握以下,因为本题比较简单,了解一下二叉搜索树的特性。
题目链接/文章讲解: 二叉搜索树中的搜索
public TreeNode searchBST(TreeNode root, int val) {
if (root == null || root.val == val) {
return root;
}
TreeNode left = searchBST(root.left, val);
if (left != null) {
return left;
}
return searchBST(root.right, val);
}
98.验证二叉搜索树
前言:遇到搜索树,一定想着中序遍历,这样才能利用上特性。但本题是有陷阱的,可以自己先做一做,然后再看题解,看看自己是不是掉陷阱里了。这样理解的更深刻。
题目链接/文章讲解:验证搜索二叉树
public boolean isValidBST(TreeNode root) {
Stack<TreeNode> stack = new Stack<>();
TreeNode pre = null;
if(root != null)
stack.add(root);
while(!stack.isEmpty()){
TreeNode curr = stack.peek();
if(curr != null){
stack.pop();
if(curr.right != null)
stack.add(curr.right);
stack.add(curr);
stack.add(null);
if(curr.left != null)
stack.add(curr.left);
}else{
stack.pop();
TreeNode temp = stack.pop();
if(pre != null && pre.val >= temp.val)
return false;
pre = temp;
}
}
return true;
}