(18)图像分割——3D U-Net

    在生物医学方面,有很多3D图像,一层一层转化为2D切片很难且工作量大,而且也不高效,因为相邻切片之间的信息相似性很大。而用整个3D体积的全部数据去训练既低效又极有可能过拟合(如abus假阳性严重),同时无法创造出海量数据去好好训练(数据扩增上的困难)。

    3D Unet只需要少部分2D的标注切片就可以生成密集的立体的分割。此网络主要有两个不同的作用方式,一是在一个稀疏标注的数据集上训练并在此数据集上预测其他未标注的地方,另一个方法是在多个稀疏标注的数据集训练,然后预测新的数据。

    3D UNet基于之前的U-Net结构,不同的是将所有2D操作改为3D操作,同时为了加快收敛,避免训练瓶颈,使用了BN。并在训练时依据当前Batch信息进行了归一化和标准化。同时相比较于U-Net ,加权softmax损失函数,将未标记像素的权重设置为零,可以只从已标记的像素中学习。背景的softmax损失表达式中的权重被减少,而管内的权重增加,这样做有利于更好地分割,因为绝大多数地方是背景,相当于起到了突出强调作用。网络结构如下:


3D U-Net

    通过对医疗图像研究的分析,可以得到在许多生物医学应用程序中,只需要很少的图像就可以训练一个适当地概括的网络。这是因为每个图像都已经包含了具有相应变化的重复结构。在立体图像中,这种效果更加明显。这样我们就可以在两个容量图像上训练一个网络,从而推广到第三个。加权损失函数和特殊的数据增强使我们仅用少量手动标注的片来训练网络。u-net的体系结构和数据增强允许从很少的带注释的示例中获得非常好的泛化性能的学习模型,并显示适当地应用刚性转换和轻微的弹性变形仍然会产生生物学上可信的图像。

    这里使用的数据是爪蟾肾胚,标记时0表示在管内,1表示管壁,2表示背景,3表示未标记,对经常出现的背景进行了加权,增加了内部小管的权重,以达到小管和背景体素对损耗的平衡影响。带有标签3的体素(“未标记的”)不会对损失计算有贡献,即重量为0。并通过cuDNN 加速。

    通过旋转、缩放和灰度变化以及在标签和真实数据上的弹性变化进行数据扩增。在实验过程中,作者还采取了交叉验证和对比验证,对半自动和全自动分割两种情况,最好的是3D+BN,其次是3D(无BN),最后是2D+BN。77个切片样本分为3个子集进行3折交叉验证。

    部分参考:https://blog.csdn.net/wyzjack47/article/details/81118483;https://github.com/ellisdg/3DUnetCNN

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容