R携程评论分析

一般通过网络爬虫的方式抓取各大网站的评论数据,本次分析数据就来源于携程网某酒店的评论,在同事的协助下,成功爬取该酒店的评论数据,于是我开始使用这些数据做相关的分析。

本次文本分析中需要使用如下3个包:

1)Rwordseg包用于分词

2)tmcn用于词频统计

3)wordcloud用于绘制文字云

library(Rwordseg)

library(tmcn)

library(wordcloud)

#读取数据

Evaluation <- read.csv(file = file.choose(), encoding = 'UFT-8')

#剔除评论数据中含有的英文和数字

text <- gsub('[a-zA-Z0-9]','',Evaluation$Evaluation)

#分词

segword <- segmentCN(strwords = text)

#查看第一条评论的分词效果

segword[1]

从上图的结果中发现,经分割后的词中有许多无意义的停止词,如“是”,“只”,“了”,“也”等,这些词是需要剔除的。关于停止词,可以到网上搜索获取。

#读取停止词

mystopwords <- read.table(file = file.choose(), stringsAsFactors = FALSE)

head(mystopwords)

class(mystopwords)

由于读入的数据为数据框格式,需要将其转换为向量格式,即:

mystopwords <- as.vector(mystopwords[,1])

head(mystopwords)

现在有了停止词词库,接下来需要将分割后的词与停止词词库进行比对,将含有停止词的词进行剔除。下面是自定义删除停止词的函数:

removewords <- function(target_words,stop_words){

target_words = target_words[target_words%in%stop_words==FALSE]

return(target_words)

}

#将该函数应用到已分割的词中

segword2 <- sapply(X = segword, FUN = removewords, mystopwords)

#查看已删除后的分词结果

segword2[[1]]

从上图中显示,一些无意义的停止词已经被剔除,下面就使用比较干净的词绘制文字云,以大致查看分词效果。

word_freq <- getWordFreq(string = unlist(segword2))

opar <- par(no.readonly = TRUE)

par(bg = 'black')

#绘制出现频率最高的前50个词

wordcloud(words = word_freq$Word, freq = word_freq$Freq, max.words = 50,

random.color = TRUE, colors = rainbow(n = 7))

par(opar)

发现“不错”这个词非常明显,但到底是什么不错呢?下面来看一看都是哪些评论包含不错这样的字眼。

#根据频繁出现词汇,还原初始评价

index <- NULL

for(i in 1:length(segword)){

if (any(segword[[i]] %in% '不错') == TRUE)

index = unique(c(index, i))

}

text[index]

含有“不错”字眼的评论有658条,这就需要人为干涉,将这些“不错”进行简化并组成词典。

这是一个非常繁工的过程,需要耐心的查看这些评论中都是怎么表达的情感的。经过约3个小时的人为选词(不断反复查看),将这些词组成词典,并导入为自定义词汇。(可能该方法比较笨拙,如有更好的方法,还请看官指导)。

#自定义词汇

words <- c('房间干净','服务不错','酒店不错','不错的酒店','不错的地方','卫生不错','设施不错','设备不错','硬件不错','位置不错','地段不错','景色不错','景观不错','环境不错','风景不错','视野不错','夜景不错','口味不错','味道不错','感觉不错','态度不错','态度冷漠','态度冷淡','服务差劲','热情','热心','不热情','态度好','态度差','态度不好','素质差','质量不错','房间不错','浴缸不错','早餐不错','早餐质量差','自助餐不错','下午茶不错','强烈推荐','推荐入住','值得推荐','性价比不错','隔音不错','体验不错','不错的体验','设施陈旧','五星级酒店','性价比不错','交通便利','交通方便','出行方便','房间小','价格不错','前台效率太低','携程','地理位置','陆家嘴')

#插入自定义词汇

insertWords(strwords = words)

由于上面的词汇都是经过简化而成的,而原始评论可能是:“房间很干净”,“服务还是蛮不错的”,“酒店真心不错”等,所以就需要剔除这些干扰分词的词(“还是”,“蛮”,“真心”,“的”等)。

#根据业务情况、需要在原始评论中删除的字和词

pattern <- c('还是','很也','了','点','可以','还','是','真心','都','相当','大家','确实','挺','非常','应该','蛮','整体','里面','就','实在','总体','听说','有点','比较','质量','都是','够','十分','还算','极其','也算','方面','太','算是')

#将这些词组成“正则表达式”

pattern2 <- paste("[",paste(pattern,collapse = ','),"]", sep = '')

#剔除原始评论中含有的这些干扰词汇

text2 <- gsub(pattern = pattern2, replacement = '', x = text)

好,经过清洗后,原始的评论相对简介而干净,下面对其进一步分词,记住,之前已经构建了自定义词汇,他会产生指定组合的词,如“酒店”,“不错”两个词组合为“酒店不错”。

#分词

segword3 <- segmentCN(strwords = text2)

head(segword3)

#新建停止词

stopwords_v2 <- c('不错','酒店','交通','前台','出差','价','去','免费','入','入住','大道','吃','退','上海','说','床','态度','升级','地理','很好','号','住','服务员','房间','服务','设施','环境','位置')

#创建新添加的停止词

mystopwords <- c(mystopwords,stopwords_v2)

#排除停止词

segword4 <- sapply(X = segword3, FUN = removewords, mystopwords)

#查看已删除后的分词结果

segword4[[1]]

根据上面的分词结果,再一次绘制文字云,具体如下:

word_freq2 <- getWordFreq(string = unlist(segword4))

opar <- par(no.readonly = TRUE)

par(bg = 'black')

#绘制出现频率最高的前50个词

wordcloud(words = word_freq2$Word, freq = word_freq2$Freq, scale = c(4,0.1), max.words = 50,random.color = TRUE, colors = rainbow(n = 7))

par(opar)

发现还是有一些词影响了其真实情况,如“早餐”,"房"等,需要进一步将其纳入停止词,因为这些词之前已经被组合成其他词汇。

#再一次清除停止词

stopwords_v3 <- c('早餐','嘴','电话','订','楼','人员','钟','修','办理','客人','品种','朋友','带','出门','房','影响','硬件','感觉','想','验','洁','希望','送')

segword5 <- sapply(X = segword4, FUN = removewords, stopwords_v3)

#查看已删除后的分词结果

segword5[[1]]

根据这次剔除的停止词,我们再绘制一次文字云:

word_freq3 <- getWordFreq(string = unlist(segword5))

opar <- par(no.readonly = TRUE)

par(bg = "black")

#绘制出现频率最高的前50个词

wordcloud(words = word_freq3$Word, freq = word_freq3$Freq, scale = c(4,0.1), max.words = 50,random.color = TRUE, colors = rainbow(n = 7))

par(opar)

发现文字云中含有相同意思的词汇,如“推荐”和“值得推荐”,这就要将这样的词汇合并为一个词汇,具体如下:

#将推荐和值得推荐合并

segword6 <- unlist(segword5)

segword6[segword6 == '推荐'] <- '值得推荐'

#重新绘制文字云

word_freq4 <- getWordFreq(string = unlist(segword6))

opar <- par(no.readonly = TRUE)

par(bg = "black")

#绘制出现频率最高的前50个词

wordcloud(words = word_freq4$Word, freq = word_freq4$Freq, scale = c(4,0.1), max.words = 50, random.order = F, random.color = T, colors = rainbow(n = 7))

par(opar)

上面使用R的wordcloud包绘制文字云,也可以使用工具tagxedo绘制,绘制之前需要将txt文件输入该工具中,该工具的使用可至网站:

http://www.tagxedo.com

#将前50的词频写出到txt文件

write.table(head(word_freq4,50),'word_freq.txt', row.names = FALSE, sep = ' ', quote = FALSE)

在同事的热心帮助下,使用工具tagxedo绘制的个性化文字云,文字云以房子的形状为背景:

结论:

从文字云的返回结果可知:

1)总体评价是比较满意的,如:服务不错、环境不错、酒店不错、满意等

2)酒店附近有地铁,说明交通便利

3)“携程”,说明房客中的一部分来源于携程

4)当然也有一些负面评价,如“不便”,“施工”,“修路”等

5)最后,房客觉得这家酒店非常值得推荐,间接将给酒店带来额外客户

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容