用来计算
RSS
https://github.com/aertslab/SCENIC/blob/master/R/aux_rss.R
RSS <- calcRSS(AUC=getAUC(regulonAUC), cellAnnotation=as.numeric(object_used_CD@active.ident)-1)
#' @title RSS
#' @description Calculates the regulon specificity score
#' @param AUC
#' @param cellAnnotation
#' @param cellTypes
#' @return Matrix with the regulon specificity scores
#' @seealso
#' The RSS was first used by Suo et al. in:
#' Revealing the Critical Regulators of Cell Identity in the Mouse Cell Atlas.
#' Cell Reports (2018). doi: 10.1016/j.celrep.2018.10.045
#' @examples
#' # TODO
#' @export
calcRSS <- function(AUC, cellAnnotation, cellTypes=NULL)
{
if(any(is.na(cellAnnotation))) stop("NAs in annotation")
if(any(class(AUC)=="aucellResults")) AUC <- getAUC(AUC)
normAUC <- AUC/rowSums(AUC)
if(is.null(cellTypes)) cellTypes <- unique(cellAnnotation)
#
ctapply <- lapply
if(require('BiocParallel')) ctapply <- bplapply
rss <- ctapply(cellTypes, function(thisType)
sapply(rownames(normAUC), function(thisRegulon)
{
pRegulon <- normAUC[thisRegulon,]
pCellType <- as.numeric(cellAnnotation==thisType)
pCellType <- pCellType/sum(pCellType)
.calcRSS.oneRegulon(pRegulon, pCellType)
})
)
rss <- do.call(cbind, rss)
colnames(rss) <- cellTypes
return(rss)
}
#' @title Plot RSS
#' @description Plots an overview of the regulon specificity score
#' @param rss Output of calcRSS()
#' @param labelsToDiscard Cell labels to ignore (i.e. do not plot). IMPORTANT: All cells in the analysis should be included when calculating the RSS.
#' @param zThreshold
#' @param cluster_columns
#' @param order_rows
#' @param thr
#' @param varName
#' @param col.low
#' @param col.mid
#' @param col.high
#' @param setName Gene-set or cell type name to plot with plotRSS_oneSet()
#' @param n Number of top regulons to label in plotRSS_oneSet(). Default: 5
#' @param verbose
#' @return Matrix with the regulon specificity scores
#' @examples
#' # TODO
#' @export
plotRSS <- function(rss, labelsToDiscard=NULL, zThreshold=1,
cluster_columns=FALSE, order_rows=TRUE, thr=0.01, varName="cellType",
col.low="grey90", col.mid="darkolivegreen3", col.high="darkgreen",
revCol=FALSE, verbose=TRUE)
{
varSize="RSS"
varCol="Z"
if(revCol) {
varSize="Z"
varCol="RSS"
}
rssNorm <- scale(rss) # scale the full matrix...
rssNorm <- rssNorm[,which(!colnames(rssNorm) %in% labelsToDiscard)] # remove after calculating...
rssNorm[rssNorm < 0] <- 0
## to get row order (easier...)
rssSubset <- rssNorm
if(!is.null(zThreshold)) rssSubset[rssSubset < zThreshold] <- 0
tmp <- .plotRSS_heatmap(rssSubset, thr=thr, cluster_columns=cluster_columns, order_rows=order_rows, verbose=verbose)
rowOrder <- rev(tmp@row_names_param$labels)
rm(tmp)
## Dotplot
rss.df <- reshape2::melt(rss)
head(rss.df)
colnames(rss.df) <- c("Topic", varName, "RSS")
rssNorm.df <- reshape2::melt(rssNorm)
colnames(rssNorm.df) <- c("Topic", varName, "Z")
rss.df <- base::merge(rss.df, rssNorm.df)
rss.df <- rss.df[which(!rss.df[,varName] %in% labelsToDiscard),] # remove after calculating...
if(nrow(rss.df)<2) stop("Insufficient rows left to plot RSS.")
rss.df <- rss.df[which(rss.df$Topic %in% rowOrder),]
rss.df[,"Topic"] <- factor(rss.df[,"Topic"], levels=rowOrder)
p <- dotHeatmap(rss.df,
var.x=varName, var.y="Topic",
var.size=varSize, min.size=.5, max.size=5,
var.col=varCol, col.low=col.low, col.mid=col.mid, col.high=col.high)
invisible(list(plot=p, df=rss.df, rowOrder=rowOrder))
}
#' @aliases plotRSS
#' @import ggplot2
#' @importFrom ggrepel geom_label_repel
#' @export
plotRSS_oneSet <- function(rss, setName, n=5)
{
library(ggplot2)
library(ggrepel)
rssThisType <- sort(rss[,setName], decreasing=TRUE)
thisRss <- data.frame(regulon=names(rssThisType), rank=seq_along(rssThisType), rss=rssThisType)
thisRss$regulon[(n+1):nrow(thisRss)] <- NA
ggplot(thisRss, aes(x=rank, y=rss)) +
geom_point(color = "blue", size = 1) +
ggtitle(setName) +
geom_label_repel(aes(label = regulon),
box.padding = 0.35,
point.padding = 0.5,
segment.color = 'grey50',
na.rm=TRUE) +
theme_classic()
}
## Internal functions:
.H <- function(pVect){
pVect <- pVect[pVect>0] # /sum(pVect) ??
- sum(pVect * log2(pVect))
}
# Jensen-Shannon Divergence (JSD)
calcJSD <- function(pRegulon, pCellType)
{
(.H((pRegulon+pCellType)/2)) - ((.H(pRegulon)+.H(pCellType))/2)
}
# Regulon specificity score (RSS)
.calcRSS.oneRegulon <- function(pRegulon, pCellType)
{
jsd <- calcJSD(pRegulon, pCellType)
1 - sqrt(jsd)
}
.plotRSS_heatmap <- plotRSS_heatmap <- function(rss, thr=NULL, row_names_gp=gpar(fontsize=5), order_rows=TRUE, cluster_rows=FALSE, name="RSS", verbose=TRUE, ...)
{
if(is.null(thr)) thr <- signif(quantile(rss, p=.97),2)
library(ComplexHeatmap)
rssSubset <- rss[rowSums(rss > thr)>0,]
rssSubset <- rssSubset[,colSums(rssSubset > thr)>0]
if(verbose) message("Showing regulons and cell types with any RSS > ", thr, " (dim: ", nrow(rssSubset), "x", ncol(rssSubset),")")
if(order_rows)
{
maxVal <- apply(rssSubset, 1, which.max)
rss_ordered <- rssSubset[0,]
for(i in 1:ncol(rssSubset))
{
tmp <- rssSubset[which(maxVal==i),,drop=F]
tmp <- tmp[order(tmp[,i], decreasing=FALSE),,drop=F]
rss_ordered <- rbind(rss_ordered, tmp)
}
rssSubset <- rss_ordered
cluster_rows=FALSE
}
Heatmap(rssSubset, name=name, row_names_gp=row_names_gp, cluster_rows=cluster_rows, ...)
}