(一)先序遍历
解法一:
vector<int> preorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> vec;
if(!root) return vec;
st.push(root);
while(!st.empty()){
TreeNode* tmp = st.top();
st.pop();
vec.push_back(tmp -> val);
if(tmp -> right) st.push(tmp -> right);
if(tmp -> left) st.push(tmp -> left);
}
return vec;
}
解法二(较通用的辅助结点法):
vector<int> preorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> vec;
TreeNode* p = root;
while(!st.empty() || p){
if(p){
st.push(p);
vec.push_back(p -> val);
p = p -> left;
}
else{
p = st.top() -> right;
st.pop();
}
}
return vec;
}
解法三(调整结点指向的无额外空间解法):
vector<int> preorderTraversal(TreeNode* root) {
vector<int> vec;
if(!root) return vec;
TreeNode* cur = root;
TreeNode* pre = NULL;
while(cur){
if(cur -> right == NULL){
vec.push_back(cur -> val);
cur = cur -> left;
}
else{
if(cur -> left == NULL){
cur -> left = cur -> right;
cur -> right = NULL;
}
else{
pre = cur -> left;
while(pre -> right)
pre = pre -> right;
pre -> right = cur -> right;
cur -> right = NULL;
}
}
}
return vec;
}
(二)中序遍历
解法一(较通用的辅助结点法):
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> st;
TreeNode* p = root;
while(!st.empty() || p){
if(p){
st.push(p);
p = p -> left;
}
else{
p = st.top();
st.pop();
res.push_back(p -> val);
p = p -> right;
}
}
return res;
}
解法二(调整结点指向的无额外空间解法):
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
TreeNode* cur = root;
TreeNode* pre = NULL;
while(cur){
if(cur -> left == NULL){
res.push_back(cur -> val);
cur = cur -> right;
}
else{
//find the rightmost
pre = cur -> left;
while(pre -> right)
pre = pre -> right;
pre -> right = cur;
TreeNode* tmp = cur -> left;
cur -> left = NULL;
cur = tmp;
}
}
return res;
}
(三)后序遍历
要点:要加入一个结点访问次数的标志
解法一(辅助结点):
vector<int> postorderTraversal(TreeNode* root) {
map<TreeNode*, int> mp;
vector<int> vec;
stack<TreeNode*> st;
TreeNode* p = root;
while(!st.empty() || p){
if(p){
st.push(p);
mp[p] = 0;
p = p -> left;
}
else{
p = st.top();
mp[p]++;
if(mp[p] == 1)
p = p -> right;
else{ //mp[p] == 2
vec.push_back(p -> val);
st.pop();
p = NULL;
}
}
}
return vec;
}
(当结点左边访问完之后mp=1, 结点右边访问完之后mp=2)
解法二(JAVA):
设置一个PowerNode类记录是否访问过左右子树
public List<Integer> postorderTraversal(TreeNode root) {
Stack<PowerNode> s = new Stack<PowerNode>();
List<Integer> res = new LinkedList<Integer>();
if(root!=null) s.push(new PowerNode(root, false));
while(!s.isEmpty()){
PowerNode curr = s.peek();
//如果是第二次访问,就计算并pop该节点
if(curr.visited){
res.add(curr.node.val);
s.pop();
} else {
//如果是第一次访问,就将它的左右节点加入stack,并设置其已经访问了一次
if(curr.node.right!=null) s.push(new PowerNode(curr.node.right, false));
if(curr.node.left!=null) s.push(new PowerNode(curr.node.left, false));
curr.visited = true;
}
}
return res;
}
private class PowerNode {
TreeNode node;
boolean visited;
public PowerNode(TreeNode n, boolean v){
this.node = n;
this.visited = v;
}
}
解法三(反向插入):
每次加到头部,这样根节点自然就到了尾部,符合“左右根”的次序。
public List<Integer> postorderTraversal(TreeNode root) {
LinkedList<Integer> result = new LinkedList<>();
Deque<TreeNode> stack = new ArrayDeque<>();
TreeNode p = root;
while(!stack.isEmpty() || p != null) {
if(p != null) {
stack.push(p);
result.addFirst(p.val); // Reverse the process of preorder
p = p.right; // Reverse the process of preorder
} else {
TreeNode node = stack.pop();
p = node.left; // Reverse the process of preorder
}
}
return result;
}