人工智能应用案例学习1

      为了更深入了解人工智能领域知识,开启相关案例学习,就从AlphaGo开始。

      AlphaGo(“Go”为日文“碁”字发音转写,是围棋的西方名称),直译为阿尔法围棋,是于2014年开始由英国伦敦Google DeepMind开发的人工智能围棋软件,并有对应的电影纪录片《AlphaGo世纪对决》。专业术语上来说,AlphaGo的做法是使用了蒙特卡洛树搜索与两个深度神经网络相结合的方法,其中一个是以估值网络来评估大量的选点,而以走棋网络来选择落子。在这种设计下,电脑可以结合树状图的长远推断,又可像人类的大脑一样自发学习进行直觉训练,以提高下棋实力。

      在AlphaGo出现之前,机器程序在与人类围棋对战中处于明显劣势:在1997年IBM的电脑“深蓝”击败俄籍世界国际象棋冠军加里·卡斯帕罗夫之后,经过18年的发展,棋力最高的人工智能围棋程序才大约达到业余5段围棋棋手的水准,且在不让子的情况下,仍无法击败职业棋手。2012年,在4台PC上运行的Zen程序在让5子和让4子的情况下两次击败日籍九段棋手武宫正树。2013年,Crazy Stone在让4子的情况下击败日籍九段棋手石田芳夫,这样偶尔出现的战果就已经是难得的结果了。

      在AlphaGo出现之后,从下面4个实例可看出AlphaGo战胜李世石之后类似下棋机器程序在与人对弈中都占据绝对胜算。

      1)Facebook也在开发一套围棋程序,名为Darkforest。这套程序也是基于机器学习和树搜索。在2016年3月举办的第9届UEC杯世界电脑围棋大会中获得亚军。尽管该程序在其他围棋程序面前表现强劲,但截至2016年年初,它尚未击败任何职业棋手。

      2)DeepZenGo是日本程序员尾岛阳儿、加藤英树等开发的围棋程序,是在旧版本的Zen围棋软件基础上加入了深度学习技术后开发的新版本,由日本DWANGO公司、东京大学、日本棋院提供支持,其基本原理和AlphaGo类似。在第二届围棋电王战中分先以1:2不敌赵治勋九段。在2017年3月18-19日在日本举办的第10届UEC杯世界电脑围棋大会上获得亚军。在2017年3月21-23日的世界最强棋手决定战上以一胜二负的成绩名列第三名。在2017年3月26日的第5届电圣战上分先战胜了日本的一力辽七段。目前在KGS、弈城、腾讯野狐等网络围棋对弈平台上公测。

      3)绝艺(英文名Fine Art)是中国腾讯公司的AI Lab(腾讯人工智能实验室)开发的围棋人工智能。在2017年3月18-19日的第10届UEC杯世界电脑围棋大会上夺得冠军,并在2017年3月26日的第5届电圣战上分先战胜了日本的一力辽七段。目前在腾讯野狐围棋网络对弈平台上公测。

      4)CGI是由国立交通大学CGI(Computer Games and Intelligence)实验室所开发的围棋人工智能。在2017首届世界智能围棋公开赛8月16日于蒙古鄂尔多斯开战,击败绝艺与DeepZenGo,初赛全胜;17日总决赛中夺得亚军。

      为了搞清楚为何AlphaGo是如何取得如此成绩,需要深入探寻所使用技术方法,得到下面程序算法定义:AlphaGo使用蒙特卡洛树搜索(Monte Carlo tree search),借助估值网络(value network)与走棋网络(policy network)这两种深度神经网络,通过估值网络来评估大量选点,并通过走棋网络选择落点。由于围棋无法仅通过寻找最佳棋步来解决,因为一盘游戏平均约有150步,每一步平均约有200种可选的下法,这意味着有太多需要解决的可能性。AlphaGo最初通过模仿人类玩家,尝试匹配职业棋手的过往棋局,其数据库中约含3000万步棋着,后来达到了一定的熟练程度,开始和自己对弈大量棋局,使用强化学习进一步改善策略。

   

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容