1143.Lowest Common Ancestor

题目描述

The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.

A binary search tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

Given any two nodes in a BST, you are supposed to find their LCA.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

Output Specification:

For each given pair of U and V, print in a line LCA of U and V is A.if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found..

Sample Input:

6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99

Sample Output:

LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

考点

1.二叉搜索树、先序遍历、最小公共父结点。

思路

递归实现
判断根结点与两个结点的相对位置关系,如果两个结点都在根结点的左边,那么它们的最小公共父结点一定在根节点的左子树上;在右边的情况类似。如果分别位居左右,那么这个根节点就是两个结点的最小父结点。

代码

递归实现

#include <iostream>
#include <vector>
#include <map>
using namespace std;
vector<int> pre;
map<int, int>pos;
void LCA(int a, int b, int r) {
    if (a < pre[r] && b < pre[r]) {
        LCA(a, b, r + 1);
    }
    else if ((a < pre[r] && b > pre[r]) || (a > pre[r] && b < pre[r])) {
        cout << "LCA of " << a << " and " << b << " is " << pre[r] << "." <<endl;
    }
    else if (a > pre[r] && b > pre[r]) {
        LCA(a, b, r + 1);
    }
    else if (a == pre[r]) {
        cout << a << " is an ancestor of " << b << "." << endl;
    }
    else if (b == pre[r]) {
        cout << b << " is an ancestor of " << a << "." << endl;
    }
}
int main() {
    int m, n;
    cin >> m;
    cin >> n;
    pre.resize(n + 1);
    for (int i = 1; i <= n; i++) {
        cin >> pre[i];
        pos[pre[i]] = i;
    }
    for (int i = 0; i < m; i++) {
        int a, b;
        cin >> a;
        cin >> b;
        if (pos[a] == 0 && pos[b] == 0) {
            cout << "ERROR: " << a << " and " << b << " are not found." << endl;
        }
        else if (pos[a] == 0 || pos[b] == 0) {
            cout << "ERROR: " << (pos[a] == 0 ? a : b) << " is not found." << endl;
        }
        else {
            LCA(a, b, 1);
        }
    }
    return 0;
}

贴一个柳神的代码,循环实现

#include <iostream>
#include <vector>
#include <map>
using namespace std;
map<int, bool> mp;
int main() {
    int m, n, u, v, a;
    scanf("%d %d", &m, &n);
    vector<int> pre(n);
    for (int i = 0; i < n; i++) {
        scanf("%d", &pre[i]);
        mp[pre[i]] = true;
    }
    for (int i = 0; i < m; i++) {
        scanf("%d %d", &u, &v);
        for(int j = 0; j < n; j++) {
            a = pre[j];
            if ((a >= u && a <= v) || (a >= v && a <= u)) break;
        } 
        if (mp[u] == false && mp[v] == false)
            printf("ERROR: %d and %d are not found.\n", u, v);
        else if (mp[u] == false || mp[v] == false)
            printf("ERROR: %d is not found.\n", mp[u] == false ? u : v);
        else if (a == u || a == v)
            printf("%d is an ancestor of %d.\n", a, a == u ? v : u);
        else
            printf("LCA of %d and %d is %d.\n", u, v, a);
    }
    return 0;
}

果然柳神的代码看起来简单多了!

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容