图像局部纹理特征——GLCM(Grey-Level Co-occurrence Matrix)


本文参考自 OpenCV22(灰度共现矩阵/灰度共生矩阵)

一、什么是灰度共生矩阵(Grey-Level Co-occurrence Matrix)

一种描述图像局部区域或整体区域的某像素与相邻像素或一定距离内的像素的灰度关系的矩阵(大白话:灰度图像中某种形状的像素对,在全图中出现的次数)。

该矩阵中的元素值表示灰度级之间联合条件概率密度 P(i, j | d, θ),即在给定空间距离d和方向θ时,灰度以i为起始点(行),出现灰度级j(列)的概率(对频数进行归一化,即除以所有频数之和)。


二、基本概念

1. 矩阵的大小:如果不对原图像进行灰度级别的压缩的话,GLCM的大小为原灰度级^2;在实际应用中,从纹理特征的计算效率以及GLCM矩阵的存储方面考虑,通常先把原始图像的灰度等级进行压缩,比如从灰度级别为0-255的8bit图像压缩为灰度级别0-31的5bit图像,相应的共生矩阵的维数就从256*256降低到了32*32。

2. 基准窗口:以当前像素为中心,尺寸通常为奇数(3*3, 5*5, 7*7等)的一个窗口。

3. 滑动窗口:以基准窗口作为参考窗口,通过先前规定的移动方向和步长进行移动的窗口。尺寸与基准窗口相同。

4. 移动方向:基准窗口与移动窗口的相对方向。移动方向可以任意设定,通常为 0°, 45°,90°,135°

5. 移动步长:基准窗口中心像素和滑动窗口中心像素的像素距离

三、灰度共生矩阵的统计属性

灰度共生矩阵虽然提供了图像灰度方向、间隔和变化幅度的信息,但它不能直接提供区别纹理的特性,因此需要在GLCM的基础上计算用来定量描述纹理特征的统计属性——常用的9种纹理特征统计属性为

均值(Mean),方差(Variance),标准差(Std),同质性(Homogeneity),对比度(Contrast),非相似性(Dissimilarity),熵(Entropy),角二阶矩(Angular Second Moment),相关性(Correlation)


四、具体示例

假设原图像为


对应的灰度值为


对灰度等级进行压缩(256 -> 3)


可以知道,这个图像的灰度是3阶,也就是说,我们的GLCM,是3阶方阵(GLCM的阶数等于灰度的等级数)

δ:表示像素对的位置关系(两个像素相对位置关系,分为水平、垂直,+45,-45)


i、j:分别表示两个像素的灰度等级;

n(i, j):表示灰度等级i和j的像素对,在δ定义的位置关系下,出现的次数

比如n(0,0),δ定义为水平,(0,0)像素对水平排列在灰度图中出现的次数为“0”

比如n(0,1),δ定义为水平,(0,1)像素对水平排列在灰度图中出现的次数为“12”

如图:


即最后得到的GLCM 如下(注意 (2,0), (1, 2) 水平出现的次数也为12):


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,699评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,124评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,127评论 0 358
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,342评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,356评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,057评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,654评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,572评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,095评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,205评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,343评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,015评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,704评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,196评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,320评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,690评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,348评论 2 358

推荐阅读更多精彩内容