Python 股票数据采集并做数据可视化(爬虫 + 数据分析)

前 言

嗨喽!大家好,这里是魔王!

课 题:

Python 股票数据采集并做数据可视化(爬虫 + 数据分析)

课题介绍:

我国股票投资者数量为15975.24万户, 如此多的股民热衷于炒股,

首先抛开炒股技术不说, 那么多股票数据是不是非常难找,

找到之后是不是看着密密麻麻的数据是不是头都大了?

今天带大家爬取某平台的股票数据


image

课程亮点

  1. 系统分析网页性质
  2. 结构化的数据解析
  3. csv数据保存
  4. 数据可视化

开发环境 & 第三方模块:

  • 解释器版本: python 3.8
  • 代码编辑器: pycharm 2021.2
  • requests
    安装方法: pip install requests
  • csv

爬虫案例的步骤:

  1. 确定url地址(链接地址)
  2. 发送网络请求
  3. 数据解析(筛选数据)
  4. 数据的保存(数据库(mysql\mongodb\redis), 本地文件)


    image

本次目标:

https://xueqiu.com/hq#exchange=CN&plate=1_3_2&firstName=1&secondName=1_3&type=sha&order=desc&order_by=amount

image

导入模块

import requests     # 发送网络请求
import csv

代码

file = open('data2.csv', mode='a', encoding='utf-8', newline='')
csv_write = csv.DictWriter(file, fieldnames=['股票代码','股票名称','当前价','涨跌额','涨跌幅','年初至今','成交量','成交额','换手率','市盈率(TTM)','股息率','市值'])
csv_write.writeheader()
# 1.确定url地址(链接地址)
for page in range(1, 56):
    url = f'https://xueqiu.com/service/v5/stock/screener/quote/list?page={page}&size=30&order=desc&order_by=amount&exchange=CN&market=CN&type=sha&_=1637908787379'
    # 2.发送网络请求
    # 伪装
    headers = {
        # 浏览器伪装
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36'
    }
    response = requests.get(url, headers=headers)
    json_data = response.json()
    # print(json_data)
    # 3.数据解析(筛选数据)
    data_list = json_data['data']['list']
    for data in data_list:
        data1 = data['symbol']
        data2 = data['name']
        data3 = data['current']
        data4 = data['chg']
        data5 = data['percent']
        data6 = data['current_year_percent']
        data7 = data['volume']
        data8 = data['amount']
        data9 = data['turnover_rate']
        data10 = data['pe_ttm']
        data11 = data['dividend_yield']
        data12 = data['market_capital']
        print(data1, data2, data3, data4, data5, data6, data7, data8, data9, data10, data11, data12)
        data_dict = {
            '股票代码': data1,
            '股票名称': data2,
            '当前价': data3,
            '涨跌额': data4,
            '涨跌幅': data5,
            '年初至今': data6,
            '成交量': data7,
            '成交额': data8,
            '换手率': data9,
            '市盈率(TTM)': data10,
            '股息率': data11,
            '市值': data12,
        }
        csv_write.writerow(data_dict)
file.close()

炒股总结图

image

数据可视化

"""
数据分析: anaconda >>> jupyter notebook  文件格式 .ipynb
"""
import pandas as pd     # 做表格处理

data_df = pd.read_csv('data2.csv')
print(data_df)
image
image

好了,我的这篇文章写到这里就结束啦!

有更多建议或问题可以评论区或私信我哦!一起加油努力叭(ง •_•)ง

喜欢就关注一下博主,或点赞收藏评论一下我的文章叭!!!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容