KDE BANDWITH II

文章地址

https://blog.csdn.net/yxs9527/article/details/83749549

概述

>>> 每个点都有一个核函数,如选定高斯核函数,核函数下面积为1

>>> 离的近的点概率高

>>> 每个点的核密度累加

>>> 累加出的曲线下的面积为点的数量,除以点的数量就实现了,曲线下面积的归一化


已知n个点,使用概率密度估计求整体的概率密度分布。

盒子模型求解(直方图求解)

X=[2, 22, 42, 62, 82, 102, 122, 142,162, 182, 202 , 222],最简单的我们可以直接使用直方图来进行概率估计。每一个点用一个盒子来替代,那么此时我们有3个参数需要人工确定:

盒子长我们分别设定0.5    

盒子右边界设定为[0-0.5]和[0.25-0.75]两种情况分别讨论如下两个图所示。

盒子高度为1/n=1/12 ,n为数据的总数

那么我们,利用盒子累加的方式,画图如下所示,则方块的高地为密度的一直估计:




可以看出,当你的右边界设定不同的时候,产生的概率密度估计差异非常大,单峰和双峰的区别。

暴露了一下的一些不足:

1.盒子长度对结果影响太大

2.盒子的边界对结果影响太大

3.不平滑


以盒子为核的核密度估计

盒子模型不是围绕着点来展开,而是围绕区间范围的展开,它是区间范围频数累加,这就是直方图了,上面三点总结的就是直方图的弱点。

如果不围绕着区间范围而是围绕着点来展开,也就是说把核函数设置为盒子,我们称之为盒子核,

而且盒子的中心点和就是数据点,盒子宽度仍然是固定的,高度是1/12

那就是下面这样的:


这个我们则可以称为以盒子为核的核密度估计。它解决了区间段划分对核密度估计的影响。但仍然存在以下问题:

1. 不平滑

2. 盒子长度不好确定

基于此,我们可以选择出更加平滑的核进行密度估计,比如高斯核,则可以有效解决问题1,即不平滑的问题。

高斯核概率密度估计

我们使用高斯核来进行密度估计,则唯一需要确定的参数就是带宽,即盒子长度,同样也是正态分布的标准差。我们设为0.1,则高斯核密度估计可以如下进行:

对每一个点都产生一个高斯分布,u=点坐标,σ=0.1,则可以得到如下的核密度估计,总体的密度估计则为每一个点的密度估计总和,注意的是因为所有的密度概率函数积分等1,所有我们得到的子正态分布的概率即覆盖的面积为1/12才行。


因为h=0.1导致不平滑,所以我们用h=0.5来替代,但是有导致另外一问题,即远离了真实的最优值,我们需要一些方法去确认最优h,则可以使用最小化MASE。

理论上存在一个最小化mean square error的一个h。h的选取应该取决于N,当N越大的时候,我们可以用一个比较小的h,因为较大的N保证了即使比较小的h也足以保证区间内有足够多的点用于计算概率密度。因而,我们通常要求当N→∞,h→0。比如,在这里可以推导出,最优的h应该是N的-1/5次方乘以一个常数,也就是。对于正态分布而言,可以计算出c=1.05×标准差。

关于h的确定可以查看这篇博客

http://blog.csdn.net/chixuezhihun/article/details/73928749


自适应带宽的核密度估计可以参考维基百科:https://en.wikipedia.org/wiki/Variable_kernel_density_estimation

推荐帖子:http://blog.sina.com.cn/s/blog_62b37bfe0101homb.html

参考资料

https://en.wikipedia.org/wiki/Kernel_density_estimation

https://www.zhihu.com/question/20212426/answer/74989607

https://en.wikipedia.org/wiki/Variable_kernel_density_estimation

http://www.tuicool.com/articles/EVJnI3

袁修开,吕震宙,池巧君. 基于核密度估计的自适应重要抽样可靠性灵敏度分析.西北工业大学学报.Vol.26 No.3.2008.6.



应用例子:

https://www.kaggle.com/arthurtok/introduction-to-ensembling-stacking-in-python

g = sns.pairplot(train[['Survived', u'Pclass', u'Age', u'Sex',u'Parch', u'Fare', u'Embarked',

      u'FamilySize', u'Title']], hue='Survived', palette = 'seismic',height=1.2,diag_kind = 'kde',diag_kws=dict(shade=True, kernel='gau',bw=1.0),plot_kws=dict(s=10) )

g.set(xticklabels=[])

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容