数据挖掘(异常检测)——相似度

DataWhale 组队学习 2021.05 组队学习系列笔记四

异常检测(相似度)

LOF 方法是一种典型的基于密度的高精度离群点检测方法。
在 LOF 方法中,通过给每个数据点都分配一个依赖于邻域密度的离群因子 LOF,进而判断该数据点是否为离群点。若 LOF >> 1, 则该数据点为离群点;若 LOF 接近于 1,则该数据点为正常数据点。

实现(sklearn):

sklearn.neighbors.LocalOutlierFactor(n_neighbors=20, ***, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, contamination='auto', novelty=False, n_jobs=None)[source]

  • n_neighbors = 20:即k,检测的邻域点个数超过样本数则使用所有的样本进行检测
  • algorithm = 'auto':使用的求解算法,使用默认值即可
  • contamination = 0.1:范围为 (0, 0.5),表示样本中的异常点比例,默认为 0.1
  • n_jobs = -1:并行任务数,设置为-1表示使用所有CPU进行工作
  • p = 2:距离度量函数,默认使用欧式距离。(其他距离模型使用较少,这里不作介绍。具体参考官方文档
    from sklearn.neighbors import LocalOutlierFactor
    clf = LocalOutlierFactor(n_neighbors=k + 1, algorithm='auto', contamination=0.1, n_jobs=-1)
    clf.fit(data)
    # 记录 k 邻域距离
    predict['k distances'] = clf.kneighbors(predict)[0].max(axis=1)
    # 记录 LOF 离群因子,做相反数处理
    predict['local outlier factor'] = -clf._decision_function(predict.iloc[:, :-1])
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,383评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,522评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,852评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,621评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,741评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,929评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,076评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,803评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,265评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,582评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,716评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,395评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,039评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,027评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,488评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,612评论 2 350

推荐阅读更多精彩内容

  • 主要内容包括: 基于距离的度量 基于密度的度量 LOF检测样例 1、概述   “异常”通常是一个主观的判断,什么样...
    Q_cy阅读 728评论 0 0
  • 1、概述 “异常”通常是一个主观的判断,什么样的数据被认为是“异常”的,需要结合业务背景和环境来具体分析确定。  ...
    noob鸽阅读 585评论 0 0
  • Task01: 今天开始了异常值学习的第一天。我在本科阶段学习过一些关于高维数据流故障诊断的知识。当时主要学习的是...
    Jeremy__Wang阅读 2,334评论 0 0
  • 异常检测的学习笔记并非原创,而是搜索各位大佬的帖子整理而得。如有冒犯,请联系我。 关于异常检测是去寻找异常检测点,...
    Rank_Fan007阅读 317评论 0 0
  • 借鉴于http://scikit-learn.org/stable/modules/outlier_detecti...
    晟文刀阅读 8,128评论 2 6