量化分析:探索不同NFT资产的价格分布(1)

NFT 类型(如虚拟土地、PFP 和游戏资产)是对 NFT 项目和系列进行评估的常用框架。但是,这些资产属性中较少被论及,有时甚至让人感到违反直觉的,是系列内的价格“等级”(即价位,下同),以及同价位资产在不同系列和类型中的表现。

Gringotts DAO 以成为 NFT 持有者获得流动性的一站式商店为使命。随着新的 NFT金融化协议 迅速出现,对于用户在寻求何种 NFT 类型的流动性,我们开始评估不同方法的有效性。我们没有只关注资产类别,而是研究了所有这些资产共有的属性 —— 价格。

更具体地说,我们试图回答 3 个问题:

NFT 的价格在整个市场上的分布情况如何?

是否出现了价格分布的模式,如果是,这些模式有多常见?

从这些分布中,我们该如何界定价格“等级”(即价位,下同),从而可以为特定的 NFT 找到更适合的流动性方法?

主要发现之一是,跨系列和类别的 NFT 商品,比同一系列内商品的行为表现得可能更相似。因此,价格分布分析可以让用户和开发人员更全面地了解在哪里最能找到流动性,以及金融化方法的可实现市场。

方法

NFTBank 是一个算法资产估值产品。它根据相似资产的历史价格,使用机器学习来预测 NFT 价格。我们从 NFTBank 提取了 3 个月以上的数据,首先是 2021 年 12 月 15 日(279 个系列,约 240 万 NFT,市值约 370 万 ETH),然后是 2022 年 1 月 13 日(540 个系列,约 1420 万 NFT,市值约 890 万 ETH),最近的是 2022 年 2 月 27 日(538 个系列,约 1480 万 NFT,市值约 650 万 ETH)。

本文深入探讨了我们的 4 个观察结果:

无论跨 NFT 系列或在同一系列内,价格分布通常非常集中。

价格分布呈现 5 个主要”形态“,似乎与 NFT “类别”(PFP、游戏、虚拟土地等)无相关性。

价格分布形态一般保持稳定。有 75% 的系列,在不同时间点上的价格分布保持稳定。那些发生了变化的,则是朝着“相关”的形态变化。

对具有指数式衰减和类对数正态分布的系列(占比 60%),我们可以定义和研究地板层、中间层和顶层资产的行为。

集中价格分布集中价格分布

在所有系列中,市场集中在前 10 个市值占比大于 60% 的 NFT 系列上,其(标准化)基尼系数约为 0.9。

NFT 系列内,价格分布大都遵循同一模式,即大多数 NFT 的价格都接近地板价。少量剩下的那些构成了价格区间的主体,因此对该系列 NFT 的总市值贡献巨大。

归一化价格分布图表的实例:

归一化价格 = (价格 — 最低价格)/(最高价格 — 最低价格)

在这些图表中,x 轴做 100 等分。因此,以第一个图表( CryptoPunks )为例,数据表明几乎所有 Punk 的定价都分布在整个价格区间的前 2% 以内。对最适合拿来扫地板的 NFT 金融化产品而言,就大有前途了。例如,像 NFTX 这样的流动性池可以充当“场内自动做市商”,为那些能与流动性池交易场内资产的 NFT 持有人提供即时流动性。

系列内若有大量地板价 NFT,并具备可信喂价(指那些在多个唯一地址之间频繁交易的 NFT ),就也会成为 P2POOL 借贷产品抵押物的佳选。这是因为通常地板价 NFT 被当作“等同”对待,不需要人工评估。一旦被接入某个喂价和风险自动评估机制,贷款条款就能够实现自动化。

但是,在上述样本中,请注意某些 NFT 系列(例如 VeeFriends 和 Decentraland)不符合这种“众数即地板价”的模式。事实上,价格分布模式有 5 种截然不同的形态,让我们在下一个观察中详聊。

价格分布的五种主要形态

通过对不同系列 NFT 的观察,我们看到了以下这些价格分布形态:

指数式衰减。这些系列中大部分 NFT 的价格在地板价附近,有一条较高价格组成的长尾。在我们的抽样中约 40% 的 NFT 系列属于这种情况,示例包括 Cryptopunks、RTFKT Clone X + Murakami 和 Mutant Ape Yacht Club

类对数正态分布具有与指数式相似的形̱态,但价格集中在略高于地板价的区间。在我们的抽样中约 20% 的 NFT 系列呈现了这种情况。示例包括 Bored Ape Yacht Club、Sandbox LAND 和 Decentraland。

对称分布(或类正态分布)表现为资产高度集中在平均价格附近,向两侧逐渐减少。在我们的抽样中约 5% 的 NFT 系列呈现了这种情况。示例包括 Anonymice、Blitmap 和 Rollbots。

多模态分布则在更大的区间内出现几处凸起和峰值。我们的抽样中约 20% 的 NFT 系列呈现这种情况。示例包括 VeeFriends、Autoglyphs 和 FLUF world。

点状分布具有上述之一的形态,但价格分布在小于 0.1 ETH 的区间。因为我们将此价格区间定义为大致相同,所以将其称为“点状分布”。这种形态是市值较小的 NFT 系列的共同特征(除 PVFD 之外,前 100 位的系列中没有一个表现出该形态)——因此它们起到了一种过滤器的作用。约 15% 我们抽样的 NFT 系列呈现了这种情况。例如 PVFD、Zodiac Capsules 或 PEGZ。

有趣的是,NFT 的类型(PFP、虚拟土地、游戏资产等)与价格分布的形态之间没有相关性。例如,Cryptovoxels、Decentraland 和 Somnium Space 中的虚拟土地 NFT 都具有不同的分布(分别为指数式、类对数正态分布(12月 / 1月是对称的)和多模态分布)。

价格分布很可能是 NFT 系列自身固有特征的函数,而与它所属的 NFT 类别无关。对于土地类 NFT 来说,影响因素可能是位置、地块大小、人流量(创收潜力)、已有建造物并因此溢价销售,等等。

接下来,我们研究了这些价格分布是否随时间而变化。

价格分布(通常)保持稳定

由于数据有限(仅 3 个数据点),只有时间才能证明这些分析是否将来也有效。再看一下归一化价格,我们可以看到 12 月(灰色)和 1 月(红色)的价格分布通常(但并非总是)与 2 月(蓝色)一致,或至少具有相似形态。

从 1 月和 2 月的数据中拉取的 537 个系列中,有 166 个的价格分布形态发生了变化(30%)。1 月至 12 月,我们也看到了类似的变化比例 (25%)。这听上去好像很多,但请记住,前文对 NFT 系列分布形态的分类是略显模糊的,因为我们的分类标准不是很严格。

例如,可以按照 ” 如果众数 > 地板价 => 对数正态 ” 的逻辑来区分指数式衰减和对数正态。看看下面的众数地板价比,我们选择了更宽松的定义,甚至允许众数比地板价高出 10 - 20%,因为我们采用了拟合分布来对形态进行分类。

基于此,我们认为指数式衰减和对数正态分布是“相关的”。

对于存在价格分布变化的情况:

约 42% 属于变为 / 变自点状分布。点状分布在形态上与其他四种形态之一相同,只是价格区间非常窄。

约 26% 是从指数式衰减或类对数正态变为多模态。这个类的定义也比较宽松,因为我们的分布通常只有一种模式。我们定义这个形态,是为了把 VeeFriends 这样有几个凸处(众数)的分布与其他形态区分开。

约 22% 是类对数正态和指数式衰减之间互变,(如果我们采用严格的方法,这个数字会高很多)

其余约 10% 的变化全都是变为/变自对称分布,其中类对数正态分布占比最多(6%)。这还是因为区分类对数正态分布和对称分布之间的界限比较宽松(即,这两个形态也是“相关的”)

欢迎一起讨论更相关的知识,快来关注我呀~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容