tf中交叉熵计算

tf中交叉熵计算

标签(空格分隔): tensorflow


https://zhuanlan.zhihu.com/p/27842203
http://blog.csdn.net/taoyanqi8932/article/details/77601188
http://geek.csdn.net/news/detail/126833

建议使用tf集成的api,计算上更稳定,且方便快速

一、基础计算

import tensorflow as tf
import numpy as np

sess=tf.Session()
#logits代表wx+b的输出,并没有进行softmax(因为softmax后是一个和为1的概率)
logits = np.array([[1, 2, 7],
                   [3, 5, 2],
                   [6, 1, 3],
                   [8, 2, 0],
                   [3, 6, 1]], dtype=np.float32)
#labels是[2,1,0,0,1]的ont-hot编码形式
labels = np.array([[0, 0, 1],
                   [0, 1, 0],
                   [1, 0, 0],
                   [1, 0, 0],
                   [0, 1, 0]], dtype=np.float32)

# 公式计算,-np.log(y*softmax_out) 
# y=n*c,softmax_out是n*c,相当于将每个样本softmax的c个特征中最大的取出来,再取负就是求最小
softmax_out=tf.nn.softmax(logits)
cross_entropy1 = -tf.reduce_sum(labels * tf.log(softmax_out), axis=1)   #对应元素相乘,非矩阵乘法
print sess.run(cross_entropy1)

#使用一维label计算,对每个样本取第k个元素出来,k代表实际类别
out_v = sess.run(out)
class_v = sess.run(classes)
cross_entropy1_label = -tf.log(out_v[range(len(logits)),class_v])

print sess.run(cross_entropy1_label)

#---输出
array([ 0.00917445,  0.16984604,  0.05498521,  0.00281022,  0.05498521], dtype=float32)

二、tf.nn.softmax_cross_entropy_with_logits与tf.nn.sparse_softmax_cross_entropy_with_logits

import tensorflow as tf

sess=tf.Session()
#logits代表wx+b的输出,并没有进行softmax(因为softmax后是一个和为1的概率)
logits = np.array([[1, 2, 7],
                   [3, 5, 2],
                   [6, 1, 3],
                   [8, 2, 0],
                   [3, 6, 1]], dtype=np.float32)
#labels是[2,1,0,0,1]的ont-hot编码形式
labels = np.array([[0, 0, 1],
                   [0, 1, 0],
                   [1, 0, 0],
                   [1, 0, 0],
                   [0, 1, 0]], dtype=np.float32)
                   
cross_entropy2 = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)
sess.run(cross_entropy2)

classes = tf.argmax(labels, axis=1)    #array([2, 1, 0, 0, 1])
cross_entropy3 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=classes)
sess.run(cross_entropy2)

#---cross_entropy2 输出
array([ 0.00917445,  0.16984604,  0.05498521,  0.00281022,  0.05498521], dtype=float32)

A 1-D `Tensor` of length `batch_size` of the same type as `logits` with the
      softmax cross entropy loss.

#---cross_entropy3 输出
array([ 0.00917445,  0.16984604,  0.05498521,  0.00281022,  0.05498521], dtype=float32)
      

总结:

  1. 两个函数的输出结果相同,区别在于输入的labels不同
  2. 对于sparse_softmax_cross_entropy_with_logits, labels must have the shape [batch_size] and the dtype int32 or int64. Each label is an int in range [0, num_classes-1]。
  3. 对于softmax_cross_entropy_with_logits, labels must have the shape [batch_size, num_classes] and dtype float32 or float64.

三、tf.losses.softmax_cross_entropy 和 tf.losses.sparse_softmax_cross_entropy

  1. 主要用于进行不同样本的loss计算
  2. 默认weights=1,等价于tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits)
  3. weights为标量w时,等价于w*tf.reduce_mean(tf.nn.softmax_corss..))
    4.,weights为向量时,算出的每个loss需要乘以对应样本权重,再求均值
logits = np.array([[1, 2, 7],
                   [3, 5, 2],
                   [6, 1, 3],
                   [8, 2, 0],
                   [3, 6, 1]], dtype=np.float32)

#labels是[2,1,0,0,1]的ont-hot编码形式
labels = np.array([[0, 0, 1],
                   [0, 1, 0],
                   [1, 0, 0],
                   [1, 0, 0],
                   [0, 1, 0]], dtype=np.float32)

cross1 = tf.nn.softmax_cross_entropy_with_logits(labels=labels,logits=logits)           
cross2 = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits) 
cross3 = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits,weights=0.2) 

print sess.run(cross1)            #[ 0.00917445  0.16984604  0.05498521  0.00281022  0.05498521]
print sess.run(cross2)                    #0.0583602
print sess.run(tf.reduce_mean(cross1))    #0.0583602

print sess.run(cross3)                           #0.011672
print sess.run(0.2*tf.reduce_mean(cross1))       #0.011672

tf.losses.sparse_softmax_cross_entropy 同理等价于tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits),只不过输入labels是非one-hot编码格式

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容