导数相关知识总结

基本初等函数的导数

{(C)}'=0
{(x^{n})}'=nx^{n-1}
{(a^{x})}'=a^{x}\ln(a)
{(e^{x})}'=e^{x}
{(\log(a^{x}))}'=\frac{1}{x\ln(a)}
{(\ln(x))}'=\frac{1}{x}
{(\sin(x))}'=\cos(x)
{(\cos(x))}'=-\sin(x)
{(\tan(x))}'=\sec^{2}(x)
{(\cot(x))}'=-\csc^{2}(x)
{(\sec(x))}'=\sec(x)\tan(x)
{(\csc(x))}'=-\csc(x)\cot(x)
{(\arcsin(x))}'=\frac{1}{ \sqrt{1-x^{2}}}
{(\arccos(x))}'=-\frac{1}{ \sqrt{1-x^{2}}}
{(\arctan(x))}'=\frac{1}{1+x^{2}}
{(\arccot(x))}'=- \frac{1}{1+x^{2}}

复合函数求导(一层一层的剥)

\Big({f\big(g(x)\big)}\Big)' = f'\big(g(x)\big)*g'(x)
\bigg(f\Big(g\big(h(x)\big)\Big)\bigg)'=f'\Big(g\big(h(x)\big)\Big)*g'\big(h(x)\big)*h'(x)

导数的四则运算

u=u(x) 和v=v(x)都可导,则

(u\pm v)' = u'\pm v'
(Cu)'=Cu' (C是常数)
(uv)' = u'v+uv'
(\frac{u}{v})' =\frac{u'v+uv'}{v^{2}}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容

  • 函数的三要素 定义域:使得解析式有意义 对应关系:两个变量(x和y)以何种规则联系起来 值域:随着自变量的变化,因...
    Cyj___阅读 5,998评论 0 10
  • 概念 函数在x0点的导数也就是在该点的瞬时变化率;image 求导数的步骤 求导数举例 左右导数 [图片上传失败....
    liangxifeng833阅读 539评论 1 4
  • 求导法则 导数的四则运算 定理:若函数u(x),v(x)在点可导,则函数在也可导,且 证明: 定理:若函数u(x)...
    溺于恐阅读 1,275评论 0 2
  • 2018年数学二考试大纲 考试科目:高等数学、线性代数 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为15...
    HappySheep欢乐小羊阅读 1,589评论 0 2
  • 今天感恩节哎,感谢一直在我身边的亲朋好友。感恩相遇!感恩不离不弃。 中午开了第一次的党会,身份的转变要...
    迷月闪星情阅读 10,564评论 0 11