集合类推荐设置初始化大小

本文就来分析一下为什么会有如此建议?如果一定要设置初始容量的话,设置多少比较合适?

为什么要设置HashMap的初始化容量

我们先来写一段代码在JDK 1.7 (jdk1.7.0_79)下面来分别测试下,在不指定初始化容量和指定初始化容量的情况下性能情况如何。(jdk 8 结果会有所不同,我会在后面的文章中分析)


以上代码不难理解,我们创建了3个HashMap,分别使用默认的容量(16)、使用元素个数的一半(5千万)作为初始容量、使用元素个数(一亿)作为初始容量进行初始化。然后分别向其中put一亿个KV。

输出结果:

未初始化容量,耗时 : 8303   初始化容量5000000,耗时 : 4004 初始化容量为10000000,耗时 : 3090

从结果中,我们可以知道,在已知HashMap中将要存放的KV个数的时候,设置一个合理的初始化容量可以有效的提高性能。

当然,以上结论也是有理论支撑的。我们HashMap中傻傻分不清楚的那些概念文章介绍过,HashMap有扩容机制,就是当达到扩容条件时会进行扩容。HashMap的扩容条件就是当HashMap中的元素个数(size)超过临界值(threshold)时就会自动扩容。在HashMap中,threshold = loadFactor * capacity。

所以,如果我们没有设置初始容量大小,随着元素的不断增加,HashMap会发生多次扩容,而HashMap中的扩容机制决定了每次扩容都需要重建hash表,是非常影响性能的。

从上面的代码示例中,我们还发现,同样是设置初始化容量,设置的数值不同也会影响性能,那么当我们已知HashMap中即将存放的KV个数的时候,容量设置成多少为好呢?


HashMap中初始容量的合理值

当我们使用HashMap(int initialCapacity)来初始化容量的时候,jdk会默认帮我们计算一个相对合理的值当做初始容量。那么,是不是我们只需要把已知的HashMap中即将存放的元素个数直接传给initialCapacity就可以了呢?

以下建议:


虽然,当我们使用HashMap(int initialCapacity)来初始化容量的时候,jdk会默认帮我们计算一个相对合理的值当做初始容量。但是这个值并没有参考loadFactor的值。

也就是说,如果我们设置的默认值是7,经过Jdk处理之后,会被设置成8,但是,这个HashMap在元素个数达到 8*0.75 = 6的时候就会进行一次扩容,这明显是我们不希望见到的。

如果我们通过expectedSize / 0.75F + 1.0F计算,7/0.75 + 1 = 10 ,10经过Jdk处理之后,会被设置成16,这就大大的减少了扩容的几率。

当HashMap内部维护的哈希表的容量达到75%时(默认情况下),会触发rehash,而rehash的过程是比较耗费时间的。所以初始化容量要设置成expectedSize/0.75 + 1的话,可以有效的减少冲突也可以减小误差。

所以,我可以认为,当我们明确知道HashMap中元素的个数的时候,把默认容量设置成expectedSize / 0.75F + 1.0F 是一个在性能上相对好的选择,但是,同时也会牺牲些内存。

总结

当我们想要在代码中创建一个HashMap的时候,如果我们已知这个Map中即将存放的元素个数,给HashMap设置初始容量可以在一定程度上提升效率。

但是,JDK并不会直接拿用户传进来的数字当做默认容量,而是会进行一番运算,最终得到一个2的幂。原因在《全网把Map中的hash()分析的最透彻的文章,别无二家。》介绍过,得到这个数字的算法其实是使用了使用无符号右移和按位或运算来提升效率。

但是,为了最大程度的避免扩容带来的性能消耗,我们建议可以把默认容量的数字设置成expectedSize / 0.75F + 1.0F 。在日常开发中,可以使用

Map<String, String> map = Maps.newHashMapWithExpectedSize(10);

来创建一个HashMap,计算的过程guava会帮我们完成。

但是,以上的操作是一种用内存换性能的做法,真正使用的时候,要考虑到内存的影响。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容