李宏毅机器学习视频part1-2

摘要:主要介绍为什么需要机器学习以及机器学习的big picture。

1.为什么需要机器学习

我们可以用很多if 语句去指定规则,使得机器作出相应的行为,但是他的局限就在于,人很难考虑到所有的可能性,机器作出的所有行为都必定在人类可以考虑到的范围,那么这样子的机器就永远不可能超越人类。我们想要做的是让机器拥有自己学习和思考的能力,不局限于人类定制的规则。假设你要叫他学会做语音辨识,你就告诉它这段声音是“Hi”,这段声音就是“How are you”,这段声音是“Good bye”。我们希望接下来它就学会了,你给它一个新的声音,它就可以帮你产生语音辨识的结果。

2.机器学习归根结底是从一堆function中寻找best function的过程。

3.big picture of machine learning【机器学习的图谱】

根据不同的学习情景,我们可以选择不同的机器学习分类:监督学习、非监督学习、半监督学习、transfer learning(迁移学习)和强化学习reinforcement。当获取的数据是labeled时,我们可以采用监督学习,但是通常获取大量的labeled数据是很困难的,半监督学习就应运而生,它要求部分数据labeled允许部分数据unlabeled。另外一种可以减少labeled数据的方法就是迁移学习,引用李老师课程介绍--迁移学习的意思是:假设我们要做猫和狗的分类问题,我们也一样,只有少量的有label的data。但是我们现在有大量的data,这些大量的data中可能有label也可能没有label。但是他跟我们现在要考虑的问题是没有什么特别的关系的,我们要分辨的是猫和狗的不同,但是这边有一大堆其他动物的图片还是动画图片(凉宫春日,御坂美琴)你有这一大堆不相干的图片,它到底可以带来什么帮助。这个就是迁移学习要讲的问题。当数据不满足监督学习条件时,我们可以用非监督学习或者强化学习。强化学习与监督学习最大的不同是,在监督学习中我们会告诉机器正确答案是什么,而在强化学习中我们只会给分数,机器从评价中学习。reinforcement learning其实是比较符合我们人类真正的学习的情景的,监督学习就像是我们在学校里面的学习,老师会告诉我们答案,但在真实社会中没人会告诉我们正确答案。

根据不同的分析任务,机器学习可以分为三类:回归模型、分类模型以及结构化学习。回归模型输出的是数值变量,分类模型输出的是分类变量,结构化学习输出的是有结构的变量(具体这里不是很懂,大概是很复杂不是简单的单一值的意思),结构化学习目前运用有语音识别(根据一段语音输入,输出一段语音)以及语句翻译。

确定分析任务后,我们就在相应的模型类型下结合具体情况选择具体的模型,如决策树、svm、线性回归模型等。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容