笔记|数据分析之pandas基础----Series与DataFrame的基本功能(五)

pandas

层次化索引

层次化索引让你能在一个轴上拥有多个索引级别。
层次化索引我个人理解是对索引进行了分组,比方说一部分数据是今年的,一部分数据是明年的,可通过层次化索引进行切块以方便后续选取数据

In [263]: data = Series(np.random.randn(10), index=[['2010','2010','2010','2011','2011','2011','2012','2012','2013','2013'],[
     ...: 1, 2, 3, 1, 2, 3, 1, 2, 2, 3]])  # 这种形式叫做带有```MultiIndex```索引的格式化输出形式。

In [264]: data
Out[264]:
2010  1    1.739760
      2   -1.685753
      3    0.046604
2011  1   -0.580861
      2   -1.848230
      3    0.148327
2012  1    0.552871
      2    1.347311
2013  2   -0.555054
      3    0.601366
dtype: float64

选取分好组的数据:

In [265]: data['2010']
Out[265]:
1    1.739760
2   -1.685753
3    0.046604
dtype: float64

In [267]: data.loc[['2010','2011']]
Out[267]:
2010  1    1.739760
      2   -1.685753
      3    0.046604
2011  1   -0.580861
      2   -1.848230
      3    0.148327
dtype: float64

重塑层次化索引

重塑相当于是把一个带有层次化索引的Series转换成了DataFrame,或者把DataFrame转换成带有层次化索引的Series

In [269]: data.unstack()
Out[269]:
             1         2         3
2010  1.739760 -1.685753  0.046604
2011 -0.580861 -1.848230  0.148327
2012  0.552871  1.347311       NaN
2013       NaN -0.555054  0.601366
In [280]: data.unstack().stack()
Out[280]:
2010  1    1.739760
      2   -1.685753
      3    0.046604
2011  1   -0.580861
      2   -1.848230
      3    0.148327
2012  1    0.552871
      2    1.347311
2013  2   -0.555054
      3    0.601366
dtype: float64

unstack 把带有层次化索引的Series对象转换成DataFrame对象
stackDataFrame对象转换为带有层次化索引的Series对象

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容