ICLR 2020 必看「自然语言处理(NLP)」【Prosus AI】金融情感分析FinBERT模型(含源码)!!

来源:AINLPer微信公众号
编辑: ShuYini
校稿: ShuYini
时间: 2020-1-15

TILE: FinBERT: Financial Sentiment Analysis with Pre-trained Language Models.
Contributor : Prosus AI
Paper: https://openreview.net/pdf?id=HylznxrYDr
Code: https://github.com/ProsusAI/finBERT

文章摘要

    当前许多情感分类解决方案在产品或电影评论数据集中获得了很高的分数,但是在金融领域中,这些方法的性能却大大落后。 出现这种差距的原因是行业专用语言表达,它降低了现有模型的适用性,并且缺乏高质量的标记数据来学习特定领域的积极和消极的新上下文。在没有大量训练数据集的情况下,迁移学习可以成功地适应新领域。本文探讨了NLP迁移学习在金融情感分类中的有效性。本文提出了一个基于BERT的语言模型FinBERT,它将一个金融情绪分类任务在FinancialPhrasebank数据集中的最新性能提高了14个百分点。

文章贡献

    1、引入FinBERT,这是一个基于BERT的语言模型,用于金融NLP任务。并在在两个金融情感分析数据集(FiQA、Financial PhraseBank)上得到了比较好的效果。
    2、使用另外两个预训练语言模型ULMFitELMo进行金融情感分析,并将其与FinBERT进行比较
    3、对模型的几个方面做了进一步的实验研究,包括:进一步的预训练对金融语料库的影响,防止灾难性遗忘的训练策略,以及仅对模型层的一小部分进行微调以减少训练时间,而不会显著降低性能。

文章主要内容

背景介绍

    由于每天都要产生数量空前的文本数据,因此分析来自医学或金融等不同领域的大量文本非常重要。然而,在这些专业领域中应用监督的NLP方法(如文本分类)比应用于更一般的语言要困难得多。其两个主要困难因素为: 1)利用复杂神经网络的分类方法需要大量的标记数据,而标记特定领域的文本片段需要昂贵的专业知识。2)在一般语料库上训练的NLP模型不适用于监督任务,因为特定领域的文本有专门的语言和独特的词汇和表达。

    NLP迁移学习方法是解决上述问题的有效方法,也是本文研究的重点。迁移模型背后的核心思想是,首先在非常大的语料库上训练语言模型,然后使用从语言建模任务中学的权重初始化下游模型,其中初始化层的范围可以从单个单词嵌入层到整个模型。这种方法应该减少所需的标记数据的大小,因为语言模型通过预测下一个单词,以一种无监督的方式在一个非常大的未标记语料库上学习语言语法和语义。通过在特定于域的未标记语料库上进一步对语言模型进行预训练,该模型可以学习目标域文本中的语义关系,该语义关系可能与普通语料库的分布有所不同。

    在本文中,主要探索使用微调预训练语言模型BERT的有效性。 并使用Malo等人创建的金融情感分类Financial PhraseBank数据集以及Maia等人的FiQA Task-1情感评分数据集进行验证。

模型介绍

    BERT是一种由一组Transfer叠加而成的语言模型。它以一种新颖的方式定义了语言建模。BERT不是根据之前的单词预测下一个单词,而是随机选择所有token的15%作为mask。在最后一个编码器层之上的词汇表上有一个softmax层,可以预测被掩膜的token。BERT训练的第二个任务是“下一个句子预测”。给定两个句子,该模型预测这两个句子是否相有关系。

    继先前关于在特定领域上进一步对语言模型进行预训练的有效性的工作(Howard&Ruder,2018)之后,我们尝试了两种方法:第一种是在特定领域下,即在较大金融语料库上对BERT语言模型进行了预训练。第二种方法是只对训练分类数据集中的句子进行预处理。通过在tokens最后一个隐藏状态之后添加一个稠密层来进行情绪分类。这是将BERT用于任何分类任务的推荐实践(Devlin et al.2018) 。然后,在标记的情感数据集上训练分类器网络。主要训练流程图如下图所示:

    虽然本文的重点是分类,但我们也在具有连续目标的不同数据集上实现了具有几乎相同架构的回归。这里的唯一区别是损失函数采用的是均方误差而不是交叉熵损失。正如Howard & Ruder(2018)所指出的,采用这种微调方法会有灾难性遗忘问题。因为当模型试图适应新任务时,微调过程可能会迅速导致模型“忘记”来自语言建模任务的信息。为了解决这一现象,我们采用了Howard & Ruder(2018)提出的三种技术:倾斜三角形学习率(slanted triangular learning rates)有区别微调(discriminative fine-tuning)逐步解冻(gradual unfreezing)

实验结果

实验准备

    为了进一步优化FinBert,文章使用了一个叫做TRC2-financial的金融语料库(它是路透社TRC21的一个子集,后者由路透社在2008年至2010年间发表的180万篇新闻文章组成)。本文使用的主要情感分析数据集Financial PhraseBank。该数据集由从LexisNexis数据库中随机挑选的4845个英语句子组成,其中这些句子由16名具有金融和商业背景的人进行注释。FiQA Maia数据集等是为WWW ’18会议金融观点挖掘和问题解答Challenge3创建的数据集。我们使用任务1的数据,其中包括1,174个金融新闻标题和推文及其相应的情感评分。

基线方法对比

    在对比实验中,我们考虑了三种不同方法的基线:基于GLoVe 的LSTM分类器、基于ELMo 的LSTM分类器和ULMFit分类器。这里使用召回得分来进行评价。在Financial PhraseBank数据集上的对比结果如下:

其中LPS、HSC和FinSSLX的结果取自各自的论文。
    FiQA情感数据集的结果如表3所示。本文模型在MSE和R2方面都优于最先进的模型。


预训练对分类器性能的影响
    我们比较了三种模型:1)没有进一步的预训练(Vanilla BERT表示),2)在分类训练集上进一步的预训练(FinBERT-task表示),3)在特定领域语料库上进一步的预训练,TRC2-financial (FinBERT-domain表示)。模型通过损失、准确性和测试数据集上的宏观平均F1分数进行评估。结果见表4,但是可以发现,进一步在金融领域语料库上进行预处理的分类器表现最好,但差异不是很大。

灾难性遗忘性能评估
    我们尝试了四种不同的设置:无调整(NA)、只使用倾斜三角形学习率(STL)、倾斜三角形学习率和渐进解冻(STL+GU)以及(STL+DFT),并进行了有区别的微调。实验结果发现应用这三种策略可以在测试损失和准确性方面产生最佳性能。实验结果可见下图:

=========END===========

往期回顾

入门基础
「自然语言处理(NLP)」入门系列(一)初识NLP
「自然语言处理(NLP)」入门系列(二)什么才是深度学习?
「自然语言处理(NLP)」入门系列(三)单词表示、损失优化、文本标记化
「自然语言处理(NLP)」入门系列(四)如何训练word2vec !!

论文阅读

「自然语言处理(NLP)」【爱丁堡大学】基于实体模型的数据文本生成!!
「自然语言处理(NLP)」【Borealis AI】跨域文本连贯生成神经网络模型!!
「自然语言处理(NLP)」CTRL:16.3亿个参数的条件转换语言模型
无情!「自然语言处理(NLP)」统一预训练UniLM模型(NLU+NLG)

学术圈

「自然语言处理(NLP)」你必须要知道的八个国际顶级会议!
「重磅!!」深度学习十年技术“进化史”
【圣诞福利】ICLR2020开源代码的paper集合(共计198篇)
收藏!「自然语言处理(NLP)」全球学术界”巨佬“信息大盘点(一)!

Attention

更多自然语言处理相关知识,还请关注AINLPer公众号,极品干货即刻送达。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,137评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,824评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,465评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,131评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,140评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,895评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,535评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,435评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,952评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,081评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,210评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,896评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,552评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,089评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,198评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,531评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,209评论 2 357

推荐阅读更多精彩内容

  • 本文上两篇系列 NLP的巨人肩膀(上) NLP的巨人肩膀(中) 4.6 Bidirectional Encoder...
    weizier阅读 6,443评论 1 22
  • 本文荣获“孙犁文学奖”并于2018年选为济南市中考试题,占总分20分。 作者近影 ...
    英雄拒绝黄昏阅读 2,283评论 0 3
  • 一朵一朵,花谢,一片一片,叶落,一丝一丝,秋寒。渐行渐远,一转身或许便是永远,不相见。一滴一滴,泪溅,一步一步,走...
    阡陌兮阅读 418评论 2 2
  • 姓名:陈卫东 组别:【364期乐观二组学员】【403期谦虚二组志工】【416期感谢一组志工】【456期反省二组志工...
    小胡子c阅读 134评论 0 0
  • TextInput 组件是用来通过键盘输入文字,可以使用View组件和Text组件样式,没有自己特定的样式。与Te...
    于连林520wcf阅读 4,065评论 5 15