2021-06-18 两组间差异的非参数检验之Wilcox秩和检验在R中实现

在进行两组数据间的差异分析时,我们通常会想到使用<u>t检验</u>。但若数据不满足执行t检验的参数假设(例如数据分布不符合正态性,变量在本质上就严重偏倚或呈现有序关系),无法使用t检验分析时,可以考虑使用非参数的方法来完成。

就两组数据的比较而言,wilcox秩和检验(或称Mann-Whitney U检验)是常见的非参数检验方法之一。本文简介怎样在R中进行wilcox秩和检验,以实现两组间非参数差异分析。
已知group3的shannon指数数据分布并不符合正态性,此时,若我们想比较group2和group3的shannon指数间是否存在显著差异,就不适合使用t检验(暂且不考虑对数据进行合理的转化后是否会满足t检验的参数假设),可采用非参数的方法(本文中介绍使用wilcox秩和检验)去实现。

数据预处理及正态性假设检验

首先将上述两个数据表读入R中,并合并在一起,以及数据的正态分布检验。

library(reshape2)

#读入文件,合并分组信息,数据重排
alpha <- read.table('alpha.txt', sep = '\t', header = TRUE, stringsAsFactors = FALSE, check.names = FALSE)
group  <- read.table('group.txt', sep = '\t', header = TRUE, stringsAsFactors = FALSE, check.names = FALSE)
alpha <- melt(merge(alpha, group, by = 'sample'), id = c('sample', 'group'))

#选择要比较的分组(此处查看 group2 与 group3 在 shannon 指数上是否存在显著差异)
shannon_23 <- subset(alpha, variable == 'shannon' & group %in% c('2', '3'))
shannon_23$group <- factor(shannon_23$group)
head(shannon_23, 10)
tapply(shannon_23$value, shannon_23$group, shapiro.test)
$`2`

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.89411, p-value = 0.2554


$`3`

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.78386, p-value = 0.01918

通过Shapiro-Wilk检验得知数据分布不满足正态性。这里p值小于0.05表明数据违背了正态性分布的零假设。

wilcox秩和检验

不符合正态性前提的数据,无法应用t检验去比较差异。我们考虑使用非参数的方法作为替代,对于两组数据的比较,可使用wilcox秩和检验。类似于t检验,根据样本间是否独立,分为wilcox秩和检验以及wilcox符号秩和检验。

wilcox秩和检验

##wilcox 秩和检验,我们执行了一个双侧检验 样本间相互独立
wilcox_test <- wilcox.test(value~group, shannon_23, paired = FALSE, alternative = 'two.sided')
wilcox_test
wilcox_test$p.value
0.002952603
由于p值(约为0.003)小于0.05,即拒绝了原假设(原假设两组间没有差异),group2和group3的shannon指数间存在显著不同。
##wilcox 符号秩和检验,我们执行了一个双侧检验  样本间并非相互独立
wilcox_test <- wilcox.test(value~group, shannon_23, paired = TRUE, alternative = 'two.sided')
wilcox_test
wilcox_test$p.value
0.0390625
根据p值(0.039,低于0.05)可知group2和group3的shannon指数间存在显著不同。

可视化展示

考虑作图将两组差异进行可视化展示。例如,一个简单的箱线图示例。

#作图示例
#boxplot() 箱线图
boxplot(value~group, data = shannon_23, col = c('blue', 'orange'), ylab = 'Shannon', xlab = 'Group', main = 'wilcox test: p-value = 0.00295')
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容