概率分布F(x)和概率密度f(x)

从数学上看,分布函数F(x)=P(X<x),表示随机变量X的值小于x的概率。这个意义很容易理解。概率密度f(x)是F(x)在x处的关于x的一阶导数,即变化率。如果在某一x附近取非常小的一个邻域Δx,那么,随机变量X落在(x, x+Δx)内的概率约为f(x)Δx,即P(x<X<x+Δx)≈f(x)Δx。换句话说,概率密度f(x)是X落在x处“单位宽度”内的概率。“密
度”一词可以由此理解。

1. 概率密度函数

假设有一元随机变量X,如果X是连续随机变量,那么可以定义它的概率
密度函数(probability density function, PDF) f(x),有时成为密度函数。

正太分布的概率密度函数.png

在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。它本身不是一个概率值, 可以大于1. 在xx上积分后才是概率值

我们用PDF在某一区间上的积分来刻画随机变量落在这个区间中的概率,即

image.png
image.png

2. 概率质量函数

如果X是离散型随机变量,那么可以定义它的概率质量函数(probability mass function, PMF)pX(x)。概率质量函数 (Probability Mass Function,PMF)是离散随机变量在各特定取值上的概率。即,它本身就是一个概率值**。

与连续型随机变量不同,这里的PMF其实就是高中所学的离散型随机变量的分布律,即


image.png

比如对于掷一枚均匀硬币,如果正面令X=1,如果反面令X= 0。那么它的PMF就是
image.png
  1. 概率质量函数和概率密度函数不同之处在于:概率密度函数是对连续随机变量定义的,本身不是概率,只有对连续随机变量的取值进行积分后才是概率。
  2. 对于连续型随机变量, 它任意一个确定xx值的概率值都是0, 即:
    Prob(X=x)=0Prob(X=x)=0
  3. 而对离散型随机变量, 它在任意一个xx值的概率值就是它的PMF.
  4. 如果概率密度函数fX(x) 在一点x 上连续,那么累积分布函数可导,并且它的导数
    image.png

概率密度函数用数学公式表示就是一个定积分的函数,定积分在数学中是用来求面积的,而在这里,你就把概率表示为面积即可!


image.png

左边是F(x)连续型随机变量分布函数画出的图形,右边是f(x)连续型随机变量的概率密度函数画出的图像,它们之间的关系就是,概率密度函数是分布函数的导函数。

两张图一对比,你就会发现,如果用右图中的面积来表示概率,利用图形就能很清楚的看出,哪些取值的概率更大!所以,我们在表示连续型随机变量的概率时,用f(x)概率密度函数来表示,是非常好的!

但是,可能读者会有这样的问题:

Q:概率密度函数在某一点的值有什么意义?

A:比较容易理解的意义,某点的 概率密度函数 即为 概率在该点的变化率(或导数)。很容易误以为 该点概率密度值 为 概率值.

比如: 距离(概率)和速度(概率密度)的关系.

某一点的速度, 不能以为是某一点的距离

没意义,因为距离是从XX到XX的概念

所以, 概率也需要有个区间.

这个区间可以是x的邻域(可以无限趋近于0)。对x邻域内的f(x)进行积分,可以求得这个邻域的面积,就代表了这个邻域所代表这个事件发生的概率。

3. 累积分布函数

而不管X是什么类型(连续/离散/其他)的随机变量,都可以定义它的累积分布函数(cumulative distribution function ,CDF)FX(x),有时简称为分布函数

CDF的定义是:
image.png

对于连续型随机变量,显然有
image.png

,那么分布函数CDF(FX(x))就是密度函数PDF(fX(t))的积分,PDF就是CDF的导数。

对于离散型随机变量,其CDF是阶梯状的分段函数,比如举例中的掷硬币随机变量,它的CDF如下

image.png

另外CDF的单调递增(不减)性质可以由它的定义和概率的性质推出,因为对任意x1<x2,总有
image.png

,所以
image.png

4. 常用概率密度函数

正态分布是重要的概率分布。它的概率密度函数是:


image.png
image.png

随着参数μ和δ变化,概率分布也产生变化。

随机变量X的n阶是X的n次方的期望值,即

image.png

X的方差
image.png

更广泛的说,设g 为一个有界连续函数,那么随机变量g(X)的数学期望

image.png

对概率密度函数作类似傅利叶变换可得特征函数

image.png

特征函数与概率密度函数有一对一的关系。因此,知道一个分布的特征函数就等同于知道一个分布的概率密度函数。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容