2022-03-24

自然语言处理实验演示 - 17. RegexpStemmer 词干提取

词干提取 (Stemming) 是英文语料预处理的其中一个必要步骤,英语单词在句子中使用时会转化成各种形式。除了 Porter、Snowball、Lancaster 以外,NLTK 还提供 RegexpStemmer 工具,使用正则表达式检查是否存在形态或结构前缀或后缀。本实验将对文本使用 RegexpStemmer,通过删除一些通用后缀 (如:ing 和 ed),将单词转换为基本形式。

#知识# #校园学习# #NLP# #自然语言处理# #Stem# #词形还原# #NLTK#

#人工智能专业建设# #词干提取# #实验视频##正则表达式# #Python#

个人用户获取相关代码及数据集,请访问企业网站 (www.080910t.com),扫描【知识微店(个人用户)】二维码关注或订阅。注:全部实验演示视频、代码、数据集仅授权予个人用户学习与实验使用,禁止用于二次销售、课堂教学及培训用途。

视频原创制作:广州跨象乘云软件技术有限公司

企业网站:https://www.080910t.com

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容

  • 自然语言处理实验演示 - 09. 命名实体识别(Named Entity Recognition (NER)) 命...
    跨象乘云阅读 204评论 0 0
  • 自然语言处理实验演示 - 10. 词义消歧(Word Sense Disambiguation) 一个词的意思取决...
    跨象乘云阅读 243评论 0 0
  • 自然语言处理实验演示 -15. Keras TextBlob 文本分词 事实上,并不存在一个单一的工具库能解决全部...
    跨象乘云阅读 153评论 0 0
  • 自然语言处理实验演示 - 11. 语句边界检测 语句边界检测,是检测一个句子在哪里结束,另一个句子在哪里开始的方法...
    跨象乘云阅读 462评论 0 0
  • 自然语言处理实验演示 - 13. 文本清洗和分词 我们将学习更多的文本数据预处理步骤,以及如何从预处理文本中提取特...
    跨象乘云阅读 161评论 0 0