tensorflow构建神经网络对于mnist进行判断

以下是根据莫烦Python的程序
https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-01-classifier/
还有一个作者写的挺好的
http://blog.csdn.net/wuyzhen_csdn/article/details/64920773
初步构建出基于tensorflow的一个简单的神经网络
运用的数据是mnist手写字符库
构建了三层的网络 输入层,隐藏层,输出层
代码如下

import tensorflow as tf
#下载或者加载mnist手写库
from tensorflow.examples.tutorials.mnist import input_data

# number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

def add_layer(inputs, in_size, out_size, activation_function=None,):
   # add one more layer and return the output of this layer
   Weights = tf.Variable(tf.random_normal([in_size, out_size]))
   biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,)
   Wx_plus_b = tf.matmul(inputs, Weights) + biases
   if activation_function is None:
       outputs = Wx_plus_b
   else:
       outputs = activation_function(Wx_plus_b,)
   return outputs

#计算识别的准确度
def compute_accuracy(v_xs, v_ys):
   global prediction
   y_pre = sess.run(prediction, feed_dict={xs: v_xs})
   correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
   accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
   result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
   return result

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784]) #28*28
ys = tf.placeholder(tf.float32,[None,10])  #10输出

#add output layer

prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax)

#the error between prediction and real data
#loss函数(即最优化目标函数)选用交叉熵函数
#交叉熵用来衡量预测值和真实值的相似程度,如果完全相同,它们的交叉熵等于零。
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                             reduction_indices=[1]))
##tf.log计算y中元素的对数,tf.reduce_sum计算y中第2维元素的相加
##(y为tensor with shape[None, 10]),因为参数reduction_indices=[1]
##最后tf.reduce_mean计算平均值,在源代码中我们不使用该方程,
##因为它数字上不是稳定的对于非规范化的逻辑,
##使用tf.nn.softmax_cross_entropy_with_logits
##  cross_entropy = tf.reduce_mean(  
##      tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))  
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

##sess = tf.Session()
###现在可以运行模型,通过InteractiveSession
sess = tf.InteractiveSession();

# important step
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
   init = tf.initialize_all_variables()
else:
   init = tf.global_variables_initializer()
sess.run(init)

for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
   if i % 50 == 0:
       print(compute_accuracy(
           mnist.test.images, mnist.test.labels))

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容