标准化、归一化和数据转换

高通量数据分析过程中常见的三个概念,非常容易混淆。

标准化 Data Scaling

为了使不同变量之间可以比较,例如

  • 转录组中有些基因本身表达量就大,有些表达量小,不做标准化的话,直接做PCA之类的模型,会默认表达量大的对模型贡献就大,影响正确结果
  • 代谢组中有些代谢物含量天然高,有些天然低,同理

归一化 Sample Normalization

为了消除样本自身或者测样的技术差异,使样本间可以比较。例如

  • 转录组不同样本如果测序深度不同,就会导致基因的read数不同,不做归一化就会影响结果
  • 代谢组不同样本,例如尿液样本可能浓度不同就会影响结果

数据转换 Data transformation

为了使数据符合正态分布

转录组

  • 转录组分析流程中标准化和归一化被统一叫成了标准化,或者有些资料里称为组内标准化和组间标准化。

  • 转录组的标准化有多种方法,但是很多是兼顾了组内和组间两方面

  • 寻找差异基因的时候,只涉及单个变量组间对比,不涉及样本内不同变量的比较,因此不需要做组内标准化,这也是为什么DESeq2等软件要求用原始counts数据的原因,这些软件设计了只针对组间的标准化。而目前常见的标准化方法则包含了组内标准化

  • 做PCA的时候,需要衡量一个样本内不同变量的权重,因此需要做组内标准化。R自带的scale可以进行组内标准化,但是用原始counts数据做PCA可能还需要组间标准化,因此可以考虑用DESeq2标准化之后的数据

代谢组

  • 代谢组分析流程中还是分为标准化和归一化

  • 做PCA时,标准化可以用R自带参数scale实现,如何实现归一化?MetaboAnalyst网页版或者R包可以提供归一化功能,暂时没有找到其他方法

  • 代谢组寻找差异代谢物是通过VIP值和P值,求P值的时候只需要归一化,而VIP值则需要再标准化

  • 因此代谢组数据可以统一做归一化,然后在做PCA模型的时候,再标准化

其他

  • 对列归一化:将各列的总和拉平,是为了让同一基因(代谢物)在不同样本(各列)之间能比较
  • 对行归一化:将各行的总和拉平,是为了让同一样本内不同基因或代谢物(各行)之间能比较
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352