- 向量
a * b = |a| * |b| * cos θ
- 三角函数
sec = 1 / cos x
csc = 1 / sin x
- 三角函数的公式
商的关系:
tan x = sin x / cos x
cotx = cosx / sinx
二倍角公式
sin 2x = 2sinxcosx
cos 2x = cos^2 x - sin^2 x = 2cos^2 -1 = 1 - 2sin^2 x
降幂公式
sin^2 x = 1-cos2x/2
cos^2 x = 1+cos2x / 2
平方公式
sin^2 x +cos^2 x = 1
sec^2 x - 1 = tan^2 x
csc^2 x - 1 = cot^2 x
- 等价无穷小代换
sin x ~ x
tan x ~ x
arcsin x ~ x
arctan x ~ x
e^x - 1 ~ x
ln(1+x) ~ x
1 - cos x ~ 1/2 x^2
Gen(1+x) - 1 ~ 1/2 x
- 求导公式
常:(C)' = 0
幂:(x^a)' = ax^(a-1)
(1/x)' = -1/(x^2)
(Gen[x])' = 1/(2Gen[x])
指:(a^x)' = a^x lna
(e^x)' = e^x
对:(log.a x)' = 1/xlna
(ln x)' = 1/x
反三角
(arcsin x)' = 1/(Gen[1-x^2])
(arccos x)' = - 1/(Gen[1-x^2])
(arctan x)' = 1/(1+x^2)
(arccot x)' = -1/(1+x^2)
三角函数:
(sin x)' = cos x
(cos x)' = - sin x
(tan x)' = 1/cos^2 x = sec^2 x
(cot x)' = -1/sin^2 x = -csc^2 x
(sec x)' = sec x * tan x
(csc x)' = - csc x * cot x
- 基本积分公式
(1) ~kdx = kx+C(k为常数)
(2) ~x^a dx = [x ^(a+1)] / (a+1) + C
~1/x^2 dx = - 1/x + C
~1/x^(1/2) dx = 2 x^(1/2) + C
(3) ~ a^x dx = a^x/lna + C
~e^x dx = e^x + C
(4) ~1/x dx = ln|x| + C
(5) ~ cos x dx = sin x +C
~sin xdx = -cos x +C
~sec^2 xdx = tan x +C
~csc^2 xdx = -cot x + C
~sec x tan xdx = -csc x + C
(6)~1/(1-x2)(1/2) dx = arcsin x + C
~-1/Gen(1-x^2) dx = -arcsin x + C
~1/(1+x^2) dx = arctan x + C
~ -1/(1+x^2) dx = -arctan x + C
求导公式
-
dy = f' *dx——微分公式
图片.png