准确率和召回率(precision&recall)包理解!!!!

转知乎:

假设一共有10篇文章,里面4篇是你要找的。根据你某个算法,你认为其中有5篇是你要找的,但是实际上在这5篇里面,只有3篇是真正你要找的。

那么你的这个算法的precision是3/5=60%,也就是,你找的这5篇,有3篇是真正对的

这个算法的recall是3/4=75%,也就是,一共有用的这4篇里面,你找到了其中三篇。

请自行归纳总结

假设你的女票在过去10年(还没修成正果?)里,每年都会送一份生日礼物给你,有一天,她突然问你:“记得这十年里你生日我都送过什么吗?”这不是一个简单的问题,或者说这不是一个问题,这就是一颗雷为了续命,你随即对自己的大脑进行了地毯式搜索,这时,召回率(Recall)就等于你回答正确的礼物数和你女票在你生日时送你的礼物数的总和的比值:比如,你准确地回答出10件礼物,那么召回率就为:10/10即100%如果只准确地回忆起了7件,那么召回率(Recall)就是70%但是,你所有的回答中可能有错误回答,比如,你一共给出了15个答案,其中5个是错的,这证明,你虽然可以回答出所有礼物,但是却不那么精确,因此,精确率这个概念便出现了:精确率(Precision)就是10/15,约为67%对比一下

o
也就是说,尽管你给出了所有的答案,但是你总共回答了15次,虽然100%召回了,但是精确率只有66.67%,如果你回答了不止15次呢,如果是100次呢?(还是买彩票去吧)想一下女票气得要炸裂的表情吧,你命不久矣,也就说,精确率太低,就算召回率是100%,女票眼里,你也已经是dead meat了。

算法也是一样,可以百分百召回的算法不一定是最优算法,因此,F1

Score就显得尤为重要,F1 Score就是精确率与召回率的调和平均数(Harmonic

mean),这个有兴趣的童鞋可以去看看https://en.wikipedia.org/wiki/F1_score

ALL IN ALL:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容