机器学习:K-Mean

K-Mean(K-均值聚类)算法是无监督学习,用于聚类,将数据集分成 K 个簇,K 值由用户给定
  
优点:容易实现
缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢
  
算法
  随机初始化 k 个簇中心点
  每个中心点的每个特征值在所有样本的最大值和最小值之间随机取一个
  每个样本分到距离最近的簇
  取分到该簇的所有样本的均值做为该簇的新的中心点
  重新分配每个样本到距离最近的簇
  不断迭代直到所有样本所属的簇不再改变
  
代码

# coding=utf-8
import numpy as np


def distEclud(vecA, vecB):
    """
    计算两个向量的距离
    """
    return np.sqrt(sum(np.power(vecA - vecB, 2)))


def randCent(dataSet, k):
    """
    随机初始化簇中心点
    """
    n = np.shape(dataSet)[1]

    # 用于存储 k 个簇中心点
    centroids = np.mat(np.zeros((k, n)))

    # 为 k 个簇中心点的每一个特征赋值
    for j in range(n):
        # 随机产生一个 (k,1) 矩阵,值的范围在该特征的最大和最小值之间
        minJ = min(dataSet[:, j])
        rangeJ = float(max(dataSet[:, j]) - minJ)
        centroids[:, j] = np.mat(minJ + rangeJ * np.random.rand(k, 1))
    return centroids


def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    """
    dataSet - 要进行聚类的数据
    k - 要将数据分成 k 个聚类
    distMeas - 计算向量距离的函数
    createCent - 初始化 K 个簇中心点的函数
    """

    m = np.shape(dataSet)[0]

    # 存储每一个数据属于哪个簇,与簇中心点的距离是多少
    clusterAssment = np.mat(np.zeros((m, 2)))

    # 初始化 K 个簇中心点
    centroids = createCent(dataSet, k)

    # 不断的迭代,直到所有的数据分类不再改变
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False

        # 遍历每一个数据
        for i in range(m):

            # 保存距离最近的簇中心点,及其距离
            minDist = np.inf
            minIndex = -1

            for j in range(k):
                # 计算该数据与不同的簇中心点的距离
                distJI = distMeas(centroids[j, :], dataSet[i, :])

                # 取距离最小的那个簇
                if distJI < minDist:
                    minDist = distJI
                    minIndex = j

            # 只要有一个数据的分类与上次迭代的结果不同,就会继续迭代所有数据
            if clusterAssment[i, 0] != minIndex:
                clusterChanged = True

            # 保存该数据所属的簇,以及与簇中心点的距离
            clusterAssment[i, :] = minIndex, minDist ** 2

        for cent in range(k):
            # 获取该簇的所有数据
            ptsInClust = dataSet[np.nonzero(clusterAssment[:, 0].A == cent)[0]]

            # 重新计算该簇的中心点,新的中心点每一个特征的值,是该簇所有数据在该特征的平均值
            centroids[cent, :] = np.mean(ptsInClust, axis=0)

    # 返回 K 个簇中心点,以及所有数据所属簇、与簇中心点的距离
    return centroids, clusterAssment




二分 K-Mean 算法
  簇心随机初始化容易导致 K-Mean 算法效果不好,容易收敛到局部最小值
  
  二分 K-Mean 算法将所有数据初始化为同一个簇,簇中心取所有样本均值,然后开始迭代
  每次迭代都对已有的簇按普通 K-Mean 一分为二
  计算新分的两个簇总的 SSE(方差和),计算剩下的簇总的方差和
  相加得到总和,取总和最小的那个簇的划分
  共 k - 1 次迭代产生 k 个簇

def biKmeans(dataSet, k, distMeas=distEclud):
    """
    二分 K-Mean 算法

    dataSet - 要进行聚类的数据
    k - 要将数据分成 k 个聚类
    distMeas - 计算向量距离的函数
    """
    m = np.shape(dataSet)[0]

    # 存储每一个数据属于哪个簇,与簇中心点的距离是多少
    clusterAssment = np.mat(np.zeros((m, 2)))

    # 初始化簇中心点,只有一个,每个特征值是所有点的平均值
    centroid0 = np.mean(dataSet, axis=0).tolist()[0]
    centList = [centroid0]

    for j in range(m):
        # 初始化所有数据距中心点距离
        clusterAssment[j, 1] = distMeas(np.mat(centroid0), dataSet[j, :]) ** 2

    # 每次迭代增加一个簇
    while len(centList) < k:
        lowestSSE = np.inf
        bestClustAss = bestCentToSplit = bestNewCents = None

        # 遍历每一个簇
        for i in range(len(centList)):
            # 取该簇的所有数据
            ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:, 0].A == i)[0], :]

            # 使用普通的 K-Mean 算法将该簇再分为两个簇
            centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)

            # 计算新的 2 个簇总的方差和
            sseSplit = sum(splitClustAss[:, 1])

            # 计算剩下的簇总的方差和
            sseNotSplit = sum(clusterAssment[np.nonzero(clusterAssment[:, 0].A != i)[0], 1])

            # 保存使总方差变小的划分
            if (sseSplit + sseNotSplit) < lowestSSE:
                bestCentToSplit = i
                bestNewCents = centroidMat
                bestClustAss = splitClustAss.copy()
                lowestSSE = sseSplit + sseNotSplit

        # 新划分的一部分数据赋予新的簇
        bestClustAss[np.nonzero(bestClustAss[:, 0].A == 1)[0], 0] = len(centList)

        # 另一部分数据维持原来的簇
        bestClustAss[np.nonzero(bestClustAss[:, 0].A == 0)[0], 0] = bestCentToSplit

        # 改变用于划分的簇的中心点
        centList[bestCentToSplit] = bestNewCents[0, :].tolist()[0]

        # 添加新簇的中心点
        centList.append(bestNewCents[1, :].tolist()[0])

        # 改变用于划分的数据的值
        clusterAssment[np.nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0], :] = bestClustAss

    # 返回结果
    return np.mat(centList), clusterAssment




最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容