Leetcode-1143-最长公共子序列

题目

image.png

题解

题解1

超出时间限制

// dp[m,n]=dp[m-1,n-1]+1, s1[m]==s2[n]
// dp[m,n]=max(dp[m-1,n],dp[m,n-1]), s1[m]!=s2[n]
// base case
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        if (text1.length() == 0 || text2.length() == 0) {
            return 0;
        }
        int len1 = text1.length();
        int len2 = text2.length();
        return solver(text1, text2, len1 - 1, len2 - 1);
    }
    private int solver(String text1, String text2, int m, int n) {
        if (m < 0 || n < 0) {
            return 0;
        }
        if (text1.charAt(m) == text2.charAt(n)) {
            return solver(text1, text2, m - 1, n - 1) + 1;
        } else {
            return Math.max(solver(text1, text2, m, n - 1), solver(text1, text2, m - 1, n));
        }
    }
}
题解2

对题解1的优化

// dp[m,n]=dp[m-1,n-1]+1, s1[m]==s2[n]
// dp[m,n]=max(dp[m-1,n],dp[m,n-1]), s1[m]!=s2[n]
// base case
class Solution {
    private int[][] dp;
    public int longestCommonSubsequence(String text1, String text2) {
        if (text1.length() == 0 || text2.length() == 0) {
            return 0;
        }
        int len1 = text1.length();
        int len2 = text2.length();
        dp = new int[len1][len2];
        return solver(text1, text2, len1 - 1, len2 - 1);
    }
    private int solver(String text1, String text2, int m, int n) {
        if (m < 0 || n < 0) {
            return 0;
        }
        if (dp[m][n] != 0) {     //
            return dp[m][n];
        }
        if (text1.charAt(m) == text2.charAt(n)) {
            // return solver(text1, text2, m - 1, n - 1) + 1;
            dp[m][n] = solver(text1, text2, m - 1, n - 1) + 1;
        } else {
            // return Math.max(solver(text1, text2, m, n - 1), solver(text1, text2, m - 1, n));
            dp[m][n] = Math.max(solver(text1, text2, m, n - 1), solver(text1, text2, m - 1, n));
        }
        return dp[m][n];
    }
}
题解3

对题解2的dp优化

// dp[m,n]=dp[m-1,n-1]+1, s1[m]==s2[n]
// dp[m,n]=max(dp[m-1,n],dp[m,n-1]), s1[m]!=s2[n]
// base case
class Solution {
    private int[][] dp;
    public int longestCommonSubsequence(String text1, String text2) {
        if (text1.length() == 0 || text2.length() == 0) {
            return 0;
        }
        int len1 = text1.length();
        int len2 = text2.length();
        dp = new int[len1][len2];
        // return solver(text1, text2, len1 - 1, len2 - 1);
        if (text1.charAt(0) == text2.charAt(0)) {
            dp[0][0] = 1;
        } else {
            dp[0][0] = 0;
        }
        for (int j = 1; j < len2; j++) {   // dp[0][...]
            if (text1.charAt(0) == text2.charAt(j)) {
                dp[0][j] = 1;
            } else {
                dp[0][j] = Math.max(dp[0][j-1], 0);
            }
        }
        for (int i = 1; i < len1; i++) { // dp[...][0]
            if (text1.charAt(i) == text2.charAt(0)) {
                dp[i][0] = 1;
            } else {
                dp[i][0] = Math.max(0, dp[i-1][0]);
            }
        }
        for (int i = 1; i < len1; i++) {
            for (int j = 1; j < len2; j++) {
                if (text1.charAt(i) == text2.charAt(j)) {
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);
                }
            }
        }
        return dp[len1-1][len2-1];
    }
}
题解4

对题解3的改造,因为0的处理太麻烦,所以索引+1,申请的长度也+1
特别是//3处的处理:

text1的索引是[0,i-1],但是dp[i-1][...]代表的是[1,i-1]所以对应的text是[0,i-2]

dp[i][j] 的含义是:对于 s1[1..i] 和 s2[1..j],它们的 LCS 长度是 dp[i][j]

// dp[m,n]=dp[m-1,n-1]+1, s1[m]==s2[n]
// dp[m,n]=max(dp[m-1,n],dp[m,n-1]), s1[m]!=s2[n]
// base case
class Solution {
    private int[][] dp;
    public int longestCommonSubsequence(String text1, String text2) {
        if (text1.length() == 0 || text2.length() == 0) {
            return 0;
        }
        int len1 = text1.length();
        int len2 = text2.length();
        dp = new int[len1 + 1][len2 + 1];
        // return solver(text1, text2, len1 - 1, len2 - 1);
        // if (text1.charAt(0) == text2.charAt(0)) {
        //     dp[0][0] = 1;
        // } else {
        //     dp[0][0] = 0;
        // }
        // for (int j = 1; j < len2; j++) {   // dp[0][...]
        //     if (text1.charAt(0) == text2.charAt(j)) {
        //         dp[0][j] = 1;
        //     } else {
        //         dp[0][j] = Math.max(dp[0][j-1], 0);
        //     }
        // }
        // for (int i = 1; i < len1; i++) { // dp[...][0]
        //     if (text1.charAt(i) == text2.charAt(0)) {
        //         dp[i][0] = 1;
        //     } else {
        //         dp[i][0] = Math.max(0, dp[i-1][0]);
        //     }
        // }
        for (int i = 1; i <= len1; i++) {    // 1
            for (int j = 1; j <= len2; j++) {   // 2
                if (text1.charAt(i-1) == text2.charAt(j-1)) {    // 3
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);
                }
            }
        }
        return dp[len1][len2];
    }
}

参考题解

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length();
        int n = text2.length();
        int[][] dp = new int[m+1][n+1];
        for (int i=1; i<=m; i++){
            for (int j=1; j<=n; j++){
                if (text1.charAt(i-1)==text2.charAt(j-1)){
                    dp[i][j] = 1+dp[i-1][j-1];
                }else{
                    dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[m][n];
    }
}

def longestCommonSubsequence(str1, str2) -> int:
    m, n = len(str1), len(str2)
    # 构建 DP table 和 base case
    dp = [[0] * (n + 1) for _ in range(m + 1)]
    # 进行状态转移
    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if str1[i - 1] == str2[j - 1]:
                # 找到一个 lcs 中的字符
                dp[i][j] = 1 + dp[i-1][j-1]
            else:
                dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        
    return dp[-1][-1]

参考

https://leetcode-cn.com/problems/longest-common-subsequence/solution/dong-tai-gui-hua-zhi-zui-chang-gong-gong-zi-xu-lie/

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容