ChIP-seq 分析:GO 功能测试与 Motifs 分析(12)

动动发财的小手,点个赞吧!

1. 包加载

我们可以使用 rGREAT 包中提供的 GREAT Bioconductor 接口。

library(rGREAT)

2. GO和功能测试

要提交作业,我们可以使用 Myc 峰的 GRanges 并使用 submitGreatJob 函数指定基因组。

此函数返回一个 GreatJob 对象,其中包含对我们在 GREAT 服务器上的结果的引用。要查看可用结果的类别,我们可以在 GreatJob 对象上使用 availableCategories 函数。

great_Job <- submitGreatJob(macsPeaks_GR, species = "mm10", version = "3.0.0", request_interval = 1)
availableCategories(great_Job)
availableCategories

可以使用 getEnrichmentTables 函数检索结果表并指定我们希望查看的表。

在这里,我们检索包含 2 个独立数据库结果的“Regulatory Motifs”基因集的结果表。

great_ResultTable = getEnrichmentTables(great_Job, category = "Regulatory Motifs")
names(great_ResultTable)
great_ResultTable

现在我们可以在“MSigDB 预测的启动子基序”基因集的 TSS 中使用 Myc 峰查看我们的基因的富集情况。

msigProMotifs <- great_ResultTable[["MSigDB Predicted Promoter Motifs"]]
msigProMotifs[1:4, ]
msigProMotifs

3. Motifs 分析

3.1. Motifs

转录因子 ChIPseq 的一个常见做法是研究峰下富集的基序。可以在 R/Bioconductor 中进行从头富集基序,但这可能非常耗时。在这里,我们将使用在线提供的 MEME-ChIP 套件来识别新的基序。

MEME-ChIP 需要一个包含峰下序列的 FASTA 文件作为输入,因此我们使用 BSgenome 包提取它。

3.2. 序列提取

首先,我们需要为我们正在处理的基因组加载 BSgenome 对象,UCSC 为小鼠基因组构建的 mm10,BSgenome.Mmusculus.UCSC.mm10。

library(BSgenome)
library(BSgenome.Mmusculus.UCSC.mm10)
BSgenome.Mmusculus.UCSC.mm10
BSgenome.Mmusculus.UCSC.mm10

我们现在有一个 GRanges,以山顶为中心,每个山峰的最高信号点。

macsSummits_GR
macsSummits_GR

一旦我们使峰重新居中,我们就可以将 getSeq 函数与调整大小的常见峰的 GRanges 和 mm10 的 BSgenome 对象一起使用。

getSeq 函数返回包含峰下序列的 DNAStringSet 对象。

peaksSequences <- getSeq(BSgenome.Mmusculus.UCSC.mm10, macsSummits_GR)
names(peaksSequences) <- paste0(seqnames(macsSummits_GR), ":", start(macsSummits_GR),
    "-", end(macsSummits_GR))

peaksSequences[1:2, ]
peaksSequences

3.3. 写入 FASTA 文件

writeXStringSet 函数允许用户将 DNA/RNA/AA(氨基酸)StringSet 对象写入文件。默认情况下,writeXStringSet 函数以 FASTA 格式写入序列信息(根据 MEME-ChIP 的要求)。

writeXStringSet(peaksSequences, file = "mycMel_rep1.fa")

3.4. MEME-ChIP

现在文件“mycMel_rep1.fa”包含适合 MEME-ChIP 中 Motif 分析的峰几何中心周围的序列。

在您自己的工作中,您通常会在本地安装了 MEME 的笔记本电脑上运行它,但今天我们会将生成的 FASTA 文件上传到他们的门户网站。按照此处的说明在本地安装 MEME。可以在此处找到 MEME-ChIP 的结果文件

3.5. 结果解析

我们可以从 FIMO 输出中检索 MEME-ChIP 中识别的 Myc 基序的位置。

FIMO 将 Myc 基序位置报告为 GFF3 文件,我们应该能够在 IGV 中对其进行可视化。遗憾的是,这个 GFF 文件的命名约定只导致报告了一小部分图案。

3.6. FIMO to R

幸运的是,我们可以将 motif 的 GFF 文件解析为 R 并使用 rtracklayer 包中的导入函数解决这个问题。

library(rtracklayer)
motifGFF <- import("~/Downloads/fimo.gff")

3.7. 获取有效 GFF3

我们可以给序列一些更合理的名称并将 GFF 导出到文件以在 IGV 中可视化。

motifGFF$Name <- paste0(seqnames(motifGFF), ":", start(motifGFF), "-", end(motifGFF))
motifGFF$ID <- paste0(seqnames(motifGFF), ":", start(motifGFF), "-", end(motifGFF))
export.gff3(motifGFF, con = "~/Downloads/fimoUpdated.gff")
fimoUpdated

3.8. 扫描已知 motifs

我们之前看到我们可以使用一些 Biostrings 功能 matchPattern 来扫描序列。通常使用 ChIPseq,我们可能知道我们正在寻找的基序,或者我们可以使用来自数据库(例如 JASPAR)的一组已知基序。

library(JASPAR2020)
JASPAR2020
JASPAR2020

3.9. 使用 TFBStools 从 JASPAR 获取 motifs

我们可以使用 TFBSTools 包及其 getMatrixByName 函数访问我们感兴趣的motif的模型。

library(TFBSTools)
pfm <- getMatrixByName(JASPAR2020, name = "MYC")
pfm
pfm

3.10. 使用 motifmathr 进行 motifs 扫描

有了这个 PWM,我们可以使用 motifmathr 包来扫描我们的山峰以寻找 Myc motif并返回motif的位置。
我们需要提供我们的 PWM、要在内部扫描的 GRanges 和要从中提取序列的 BSGenome 对象。我们还将输出参数设置为这个实例的位置。

library(motifmatchr)
MycMotifs <- matchMotifs(pfm, macsSummits_GR, BSgenome.Mmusculus.UCSC.mm10, out = "positions")
MycMotifs
MycMotifs

3.11. 导出匹配的 motifs

我们可以导出峰内的 Myc 基序位置,以便稍后在 IGV 中使用或用于元图可视化。

export.bed(MycMotifs[[1]], con = "MycMotifs.bed")

本文由mdnice多平台发布

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,039评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,426评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,417评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,868评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,892评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,692评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,416评论 3 419
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,326评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,782评论 1 316
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,957评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,102评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,790评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,442评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,996评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,113评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,332评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,044评论 2 355

推荐阅读更多精彩内容