m基于强化学习的永磁同步电机位置控制器simulink仿真,对比传统的PI控制器和模糊PI控制器

1.算法仿真效果

MATLAB2017b仿真结果如下:




2.算法涉及理论知识概要

永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)是一种高效、精度高、响应速度快的电机,广泛应用于现代工业和民用领域。PMSM的位置控制是PMSM控制的核心问题之一,其优化控制算法的研究一直是热门的研究方向之一。近年来,随着强化学习技术的发展,基于强化学习的PMSM位置控制器逐渐成为研究的热点。本文将从数学公式和原理、算法优缺点、实现过程以及与其他类似算法的对比等方面详细介绍基于强化学习的PMSM位置控制器。



2.1 PMSM位置控制模型

PMSM的位置控制可以通过控制其转子位置和角速度实现。PMSM的数学模型可以表示为:


\begin{cases}L\frac{di_s}{dt}+Ri_s+K_e\omega_r=V_s\J\frac{d\omega_r}{dt}+B\omega_r+K_ti_s=0\end{cases}


其中,L和 R分别是电感和电阻,i_s是电机的电流,K_e是电机的反电动势常数,\omega_r 是转子角速度,V_s是电机的电压,J和B分别是转子的转动惯量和阻尼系数,K_t是电机的转矩常数。


2.2 强化学习模型

强化学习是机器学习的一种方法,其基本思想是通过试错来学习和优化行为策略。在强化学习中,智能体通过与环境进行交互来获取奖励,并根据奖励来调整其行为策略。强化学习的基本模型包括状态、动作、奖励和策略四个要素。


2.3 基于强化学习的PMSM位置控制模型

基于强化学习的PMSM位置控制器的目标是最小化系统的位置误差,其状态可以表示为当前位置误差 e_k和当前速度误差v_k,动作可以表示为电机的电流i_s。强化学习的奖励函数可以表示为控制器的位置误差和速度误差的加权和,即:


r_k=-\alpha e_k^2-\beta v_k^2


其中,\alpha和\beta分别是位置误差和速度误差的权重因子。



2.4优点

(1)基于强化学习的PMSM位置控制器具有较好的鲁棒性和自适应性,能够适应不同负载和不同工作条件下的控制要求。


(2)能够实现高精度的位置控制和速度控制,提高电机的控制精度和响应速度。


(3)与传统的控制算法相比,基于强化学习的PMSM位置控制器具有较好的实时性和抗干扰性。


2.5 缺点

(1)由于强化学习算法需要进行大量的试错,因此训练时间较长,对计算资源要求较高。


(2)强化学习算法需要大量的样本数据进行训练,因此在实际应用中需要考虑数据采集和存储等问题。


(3)强化学习算法的结果受到初始状态和环境的影响,因此在实际应用中需要进行调试和优化。



2.6 状态和动作设计

在基于强化学习的PMSM位置控制器中,状态可以表示为当前位置误差 e_k和当前速度误差 v_k。动作可以表示为电机的电流 i_s。具体地,状态可以通过测量电机的位置和速度来获取,动作可以通过输出电机的电流来实现。


2.7 强化学习算法选择

常见的强化学习算法包括Q学习、策略梯度、深度强化学习等。在基于强化学习的PMSM位置控制器中,由于状态和动作空间较小,因此可以选择简单的强化学习算法,如Q学习。


2.8 奖励函数设计

奖励函数是基于强化学习的PMSM位置控制器的关键之一。奖励函数需要考虑位置误差和速度误差的权重因子,以及控制器的稳定性等因素。


2.9训练过程

训练过程包括初始化环境、初始化智能体、与环境交互、更新智能体策略等步骤。具体地,可以通过设置不同的控制参数来模拟不同的工作条件,获取训练数据并进行训练。


2.10 测试过程

测试过程包括载入已训练好的模型、与环境交互、输出控制信号等步骤。在测试过程中,可以通过对控制信号进行实时监测和调节来优化控制效果。


3.MATLAB核心程序


load kp1.mat

tk1  = ans.Time;

kp1_= ans.Data;

kp1 = [];

for i = 1:length(tk1)

kp1(i) = kp1_(:,:,i);

end

load ki1.mat

tk1  = ans.Time;

ki1_= ans.Data;

ki1 = [];

for i = 1:length(tk1)

ki1(i) = ki1_(:,:,i);

end


load Ip1.mat

tl1 = ans.Time;

lp1_= ans.Data;

lp1 = [];

for i = 1:length(tl1)

lp1(i) = lp1_(i);

end

load Ii1.mat

tl1 = ans.Time;

li1_= ans.Data;

li1 = [];

for i = 1:length(tl1)

li1(i) = li1_(i);

end





figure;

subplot(211);

plot(tl1(1:400:end),lp1(1:400:end),'-bs',...

'LineWidth',1,...

'MarkerSize',6,...

'MarkerEdgeColor','k',...

'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('time/s');

ylabel('K_p学习过程');



subplot(212);

plot(tl1(1:400:end),li1(1:400:end),'-r>',...

'LineWidth',1,...

'MarkerSize',6,...

'MarkerEdgeColor','k',...

'MarkerFaceColor',[0.9,0.9,0.0]);

xlabel('time/s');

ylabel('K_i学习过程');



figure;

subplot(211);

plot(tl1(1:400:end),0.8+lp1(1:400:end),'-bs',...

'LineWidth',1,...

'MarkerSize',6,...

'MarkerEdgeColor','k',...

'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('time/s');

ylabel('K_p调整过程');


subplot(212);

plot(tl1(1:400:end),0.15+li1(1:400:end),'-r>',...

'LineWidth',1,...

'MarkerSize',6,...

'MarkerEdgeColor','k',...

'MarkerFaceColor',[0.9,0.9,0.0]);

xlabel('time/s');

ylabel('K_i调整过程');











load Ip2.mat

tl1 = ans.Time;

lp1_= ans.Data;

lp1 = [];

for i = 1:length(tl1)

lp1(i) = lp1_(i);

end

load Ii2.mat

tl1 = ans.Time;

li1_= ans.Data;

li1 = [];

for i = 1:length(tl1)

li1(i) = li1_(i);

end

figure;

subplot(211);

plot(tl1(1:400:end),lp1(1:400:end),'-bs',...

'LineWidth',1,...

'MarkerSize',6,...

'MarkerEdgeColor','k',...

'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('time/s');

ylabel('K_p学习过程');

subplot(212);

plot(tl1(1:400:end),li1(1:400:end),'-r>',...

'LineWidth',1,...

'MarkerSize',6,...

'MarkerEdgeColor','k',...

'MarkerFaceColor',[0.9,0.9,0.0]);

xlabel('time/s');

ylabel('K_i学习过程');


figure;

subplot(211);

plot(tl1(1:400:end),50+lp1(1:400:end),'-bs',...

'LineWidth',1,...

'MarkerSize',6,...

'MarkerEdgeColor','k',...

'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('time/s');

ylabel('K_p调整过程');


subplot(212);

plot(tl1(1:400:end),40+li1(1:400:end),'-r>',...

'LineWidth',1,...

'MarkerSize',6,...

'MarkerEdgeColor','k',...

'MarkerFaceColor',[0.9,0.9,0.0]);

xlabel('time/s');

ylabel('K_i调整过程');

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容