数据可视化 第五周


0x01 常用图表对比

1.柱状图 VS 条形图


相同点:

柱状图和条形图的数据结构是相同的,都是由「一个分类字段+一个连续数值字段」构成。

当数据的记录数不大于12条,分类字段的字符长度小于5时,此时柱状图和条形图可以互换。

不同点:

柱状图:若分类字段,恰好是「时间序列」,此时建议使用柱状图,因为柱状图能更好地体现数据随时间的变化情况。

条形图:若分类字段的字符长度较长,且数据的记录数大于12,此时建议使用条形图。一方面,斜置的文字和用户阅读的习惯相悖,同时也占用页面空间,影响可视化图表的美感。

2.柱状图 VS 直方图


相同点:

柱状图和直方图的数据结构是相同的,都是由「一个分类/分组字段+一个连续数值字段」构成。

都是由柱形条构成。

不同点:

分析目的和适用场景不同。「柱状图」主要是比较数据的大小,「直方图」是用来展示数据的分布

映射到X轴上的数据属性不同。在柱状图中,X轴上的变量是分类数据,例如不同的手机品牌、店铺或网站在售商品的分类。在直方图中,X轴上是连续的分组区间,这些区间通常表现为数字,且一般情况下组距是相同的,例如将在售商品的价格区间分为的“0-10元,10-20元……”。

宽度代表的意义不同。在柱状图中,柱子的宽度没有实际的含义,一般为了美观和整齐,会要求宽度相同;在直方图中,柱子的宽度代表了区间的长度(即组距),根据区间的不同,柱子的宽度可以不同,但其宽度原则上应该为组距的整倍。

表示数据大小的方式不同。柱状图,是通过柱形条的高度,来映射数据的大小,且柱子之间有间隔;直方图,是通过高度(频数直方图)或面积(频率直方图)来表示数据的大小,且柱子之间紧密相连,没有间隔。

3.堆叠柱状图 VS 百分比堆叠柱状图


相同点:

堆叠柱状图和百分比堆叠柱状图,都适合用来展示分类数据的构成对比或构成随时间的变化趋势

当映射到X轴上的数据为时间序列时,此时可以用堆叠面积图or百分比堆叠面积图来代替。

不同点:

堆叠柱状图:既可以对比各构成部分的数值差异,还可以观测各组数据的整体差距。

百分比堆叠柱状图:只能对比整体中的各构成部分的占比差异,无法对比不同整体的差异。

4.折线图 VS 面积图

折线图和面积图可以互换的情况:

折线图和面积图不能互换的情况:显示构成或占比时,应该使用面积图☞堆叠面积图or百分比堆叠面积图。

相同点:

折线图和面积图展示的是数据随时间的变化趋势,因此映射到X轴的数据类型一般为「时间/日期」。

二者均可以展现一个或多个变量和时间的关系,这种关系包括,周期性变化、季节性变化、异常波动等。

在大部分情况下,折线图和面积图是可以互换的。

不同点:

折线图:通过数据点的纵坐标来映射数值的大小,一般只用来表示数据的趋势。

面积图:通过面积来映射数值的大小,「面积图」除了可以替换折线图外,还可以用来表示整体及其构成部分随时间的变化趋势。

注意点:

当使用面积图表示多系列的趋势时,需要对代表不同系列的面积区块颜色设置透明度,透明度可以减少不同系列之间的遮盖,帮助我们看到不同序列之间的重叠关系和更多信息。

当一个图表中,系列值过多时,折线图会比面积图更直观,因为减少了系列的覆盖和重叠,能更清晰的看看到各个系列的趋势变化。

5.堆叠面积图 VS 百分比堆叠面积图

相同点:

堆叠面积图和百分比堆叠面积图,映射到X轴的均为【时间序列】。

两者都可以展示各构成部分,随时间的变化趋势,只不过「堆叠面积图」的是构成部分的实际值随时间的变化趋势,「百分比堆叠面积图」展示的是构成部分的占比随时间的变化趋势。

不同点:

堆叠面积图:除了可以展示各构成部分随时间的变化趋势,还可以展示整体随时间的变化趋势

百分比堆叠面积图:只能展示各构成部分占总体的比例随时间的变化,无法观测总体随时间的变化趋势。此外,从任何一个时间节点纵切下来,各部分占比之和必须为100%,即必须等于该节点的整体。

6.堆叠面积图 VS 堆叠柱状图


相同点:

堆叠面积图和堆叠柱状图的数据集格式类似,都是由「一个分类字段+多个连续数值字段」构成,且多个连续数值字段,是一个整体的各组成部分。

两者都可以观测某一节点的总体数值和各组成部分的具体数值,都有数据对比的功能。

不同点:

堆叠面积图:堆叠面积图的分类字段,一般是时间序列。当既需要分析整体随时间的变化趋势,又要了解整体的各构成项随时间的变化情况时,应该使用【堆叠面积图】。从其目的可以看出,堆叠面积图的分类字段(即时间序列),是按照时间的先后顺序排列的。

堆叠柱状图:堆叠柱状图的分类字段,一般是非时间类型的分类数据。当既要对比不同整体的数据大小,又要观测整体各构成项的数据大小时,应该使用【堆叠柱状图】。若整体的构成项过多,为了突出重点,需要对构成项进行重新归类,展示TOP5的分类,剩下则归为「其他」。

7.散点图 VS 气泡图

相同点:

散点图和气泡图,均是用来展示数据分布情况的一种图形。

散点图和气泡图,都是将两个字段映射到x,y轴的位置上,(x,y)的取值确定一个圆点或气泡在直角坐标系中的位置。

不同点:

散点图:一般用来展示二维数据(x,y)的分布,侧重于研究二维数据的两个变量x,y之间的相关性,如身高和体重之间的相关关系。散点图中,还可以展示多组数据系列的对比,比如男性身高体重和女性身高体重分布规律的对照。

气泡图:一般用来展示三维数据(x,y,z)的分布情况,相较于散点图,气泡图增加了一个维度的数据展示,且将其数值映射到气泡的大小上。气泡图,也可以展示多组数据系列的分布,以发现不同系列的分布规律和差异。

注意点:

一般来说,散点图主要是用于研究数据集的分布规律和相关性,并不是很侧重去看每个数据点的具体取值。当数据集数量过大时,不适合将全部数据点展示在散点图中,此时需要对总体进行抽样显示,通常采用分层抽样的方法进行,但是分层抽样的依据和影响因素需要依据具体的业务场景而定。

相较于散点图,气泡图不太适合过多数据容量的情况,气泡太多会使图表难以阅读。此外,对于气泡图中隐藏的一些数据信息,通常可以使用交互来辅助图标信息的阅读,如悬停显示详细数据、缩放观测被遮盖的数据点等。


0x02 作业

1.想了解一下全部发货物品的单价的分布情况,每10元作为一个区间?

2.展示销售额TOP5的产品二级大类?


3.按月份展示商品的销售数量趋势?


4.展示不同年份的商品的销售数量,及其不同年份三种运输方式的数量占比?



©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,607评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,239评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,960评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,750评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,764评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,604评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,347评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,253评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,702评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,893评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,015评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,734评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,352评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,934评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,052评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,216评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,969评论 2 355

推荐阅读更多精彩内容