【Java数据结构】Hashmap与Hashtable源码阅读笔记

引言:这几天在捣鼓Hashmap跟Hashtable的区别,其中关注的 b比较多的就是Hashmap和Hashtable计算在Entry[]数组中index的方法到底有什么区别。

Hashmap跟Hashtable的实现原理比较类似,借用一张其他地方偷来的图。

外拉链式的Hash表

可以看到,都是采用外拉链的方式来实现元素存储,底层是数组+链表实现,原理都不说了,学过数据结构中hash冲突解决的同学应该都能理解。

实现的关键在于如何通过key来计算对应value应该存放到数组中的位置:

HashTable的做法:[index = (hash & 0x7FFFFFFF) % tab.length;](1)这相当于直接将hash值对数组长度取模(跟0x7FFFFFFF做&操作是为了保证hashcode的值为正数)。HashTable中数组的初始size为11,每次扩容都按照newsize = oldsize*2+1来计算。通过取模来计算index的值,从概率上来讲,保证了节点在数组上分配比较均匀(形成尽量短的拉链,有利于提高查询效率),但是取模操作的消耗是比较大的。

HashMap的做法则非常巧妙:[index = hash & (tab.length - 1)](1)。这有什么精妙之处呢,首先,Hashmap要求数组的size为2的幂乘,比如16,32,64,仔细看,当数组大小为16的时候,tab.length-1=15,在内存中的表示是00001111,将hash值与00001111做&(位与)操作后,会将hash值除了后四位全部抹为0,只保留了后四位,这样的方式完成了跟index = (hash & 0x7FFFFFFF) % tab.length一样的效果,就是取模。但是位运算的效率比取模操作高得多,也就是说HashMap的index计算方式要比Hashtable快得多。(Hashmap的初始size是16,每次扩容按照newsize = oldsize*2)

写Android的小伙伴可以在Android Studio中打开HashTable的源码看看,Google很明显的改动了Hashtable的index计算方式,改成跟Hashmap一样啦!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容