数学分析考研重难点习题汇总(02)

数列极限02

迫敛性与积分法

  1. 计算以下极限:

    (1)\lim \limits_{n \rightarrow \infty} \sum_{k=1}^{n} \frac{(2 k-1)^{4}}{n^{5}+k^{4}};

    (2)\lim \limits_{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{n^{2}+k} \ln \left(1+\frac{k}{n}\right).

    解答.(1) 首先对任意的正整数 n, 当 1 \leq k \leq n 时,有
    \frac{(2 k-1)^{4}}{n^{5}+n^{4}} \leq \frac{(2 k-1)^{4}}{n^{5}+k^{4}} \leq \frac{(2 k-1)^{4}}{n^{5}} .
    上式关于k 求和,就有
    \frac{n^{5}}{n^{5}+n^{4}} \sum_{k=1}^{n} \frac{(2 k-1)^{4}}{n^{5}} \leq \sum_{k=1}^{n} \frac{(2 k-1)^{4}}{n^{5}+k^{4}} \leq \sum_{k=1}^{n} \frac{(2 k-1)^{4}}{n^{5}} \quad (3)
    而由定积分的性质可知
    \lim \limits_{n \rightarrow \infty} \sum_{k=1}^{n} \frac{(2 k-1)^{4}}{n^{5}}=\frac{1}{2} \lim \limits_{n \rightarrow \infty} \frac{2}{n} \sum_{k=1}^{n}\left(\frac{2 k-1}{n}\right)^{4}=\frac{1}{2} \int_{0}^{2} x^{4} \mathrm{~d} x=\frac{16}{5} .
    再结合
    \lim \limits_{n \rightarrow \infty} \frac{n^{5}}{n^{5}+n^{4}}=\lim \limits_{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1
    可知
    \lim \limits_{n \rightarrow \infty} \frac{n^{5}}{n^{5}+n^{4}} \sum_{k=1}^{n} \frac{(2 k-1)^{4}}{n^{5}}=\lim \limits_{n \rightarrow \infty} \frac{n^{5}}{n^{5}+n^{4}} \cdot \lim \limits_{n \rightarrow \infty} \sum_{k=1}^{n} \frac{(2 k-1)^{4}}{n^{5}}=\frac{16}{5} .
    所以结合(3) 式,由迫敛性可知
    \lim \limits_{n \rightarrow \infty} \sum_{k=1}^{n} \frac{(2 k-1)^{4}}{n^{5}+k^{4}}=\frac{16}{5}.

    (2)由于\frac{n}{n^{2}+k} \ln \left(1+\frac{k}{n}\right)=\frac{\ln \left(1+\frac{k}{n}\right)}{n+\frac{k}{n}},且
    \sum_{k=1}^{n} \frac{\ln \left(1+\frac{k}{n}\right)}{n+1} \leq \sum_{k=1}^{n} \frac{\ln \left(1+\frac{k}{n}\right)}{n+\frac{k}{n}} \leq \sum_{k=1}^{n} \frac{\ln \left(1+\frac{k}{n}\right)}{n} .
    同时
    \begin{array}{c} \lim \limits_{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\ln \left(1+\frac{k}{n}\right)}{n+1}=\lim \limits_{n \rightarrow \infty} \frac{n}{n+1} \cdot \frac{1}{n} \sum_{k=1}^{n} \ln \left(1+\frac{k}{n}\right)=\int_{0}^{1} \ln (1+x) \mathrm{d} x=2 \ln 2-1, \\ \lim \limits_{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\ln \left(1+\frac{k}{n}\right)}{n}=\lim \limits_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(1+\frac{k}{n}\right)=\int_{0}^{1} \ln (1+x) \mathrm{d} x=2 \ln 2-1 . \end{array}

    从而由迫敛性可知
    \lim \limits_{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{n^{2}+k} \ln \left(1+\frac{k}{n}\right)=2 \ln 2-1 .

平均值定理与 Stolz 公式

  1. \lim \limits_{n \rightarrow \infty} a_{n}=a. 证明:\lim \limits_{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=a.

    解答. 由于 \lim \limits_{n \rightarrow \infty} a_{n}=a, 所以对任意的\varepsilon > 0, 存在正整数 N, 使得 n > N 时, 有\left|a_{n}-a\right| < \varepsilon. 而明显
    \lim \limits_{n \rightarrow \infty} \frac{\left|a_{1}-a\right|+\cdots+\left|a_{N}-a\right|}{n}=0 .
    所以存在正整数 M, 使得 n > M 时, 有
    \frac{\left|a_{1}-a\right|+\cdots+\left|a_{N}-a\right|}{n} < \varepsilon .
    那么当 n > \max \{N, M\} 时, 有
    \begin{array}{l} \left|\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}-a\right| \\ =\left|\frac{\left(a_{1}-a\right)+\cdots+\left(a_{N}-a\right)+\left(a_{N+1}-a\right)+\cdots+\left(a_{n}-a\right)}{n}\right| \\ \leq \frac{\left|a_{1}-a\right|+\cdots+\left|a_{N}-a\right|}{n}+\frac{\left|a_{N+1}-a\right|+\cdots+\left|a_{n}-a\right|}{n} \\ < \varepsilon+\frac{(n-N) \varepsilon}{n} < \varepsilon+\varepsilon=2 \varepsilon . \end{array}
    这说明\lim \limits_{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=a.

  2. 设函数f \in C^{2}[0,1], f^{\prime}(0)=1, f^{\prime \prime}(0) \neq 00 < f(x) < x, x \in(0,1). 令a_{1} \in(0,1), a_{n+1}=f\left(a_{n}\right)(n=1,2, \cdots) .(1) 证明: 数列 \left\{a_{n}\right\} 收敛, 并求\lim \limits_{n \rightarrow \infty} a_{n};
    (2) 试问数列 \left\{n a_{n}\right\} 是否一定收敛? 若不一定收敛,请举出反例; 若收敛, 求其极限\lim \limits_{n \rightarrow \infty} n a_{n}.

    解答. (1) 已知 a_{1} \in(0,1), 现在设 a_{k} \in(0,1), 则根据0 < f\left(a_{k}\right) < a_{k} 可知 a_{k+1} \in(0,1), 所以由数学归纳法,对任意的正整数 n, 均有 a_{n} \in(0,1). 另外再结合a_{n+1}=f\left(a_{n}\right) < a_{n} 可知 \left\{a_{n}\right\}严格递减, 于是 \left\{a_{n}\right\} 收敛, 设\lim \limits_{n \rightarrow \infty} a_{n}=a, 则 a \in[0,1), 对等式a_{n+1}=f\left(a_{n}\right) 关于 n \rightarrow \infty 取极限, 可得a=f(a), 若 a \in(0,1), 又有 f(a) < a, 这显然是矛盾的, 所以只能是a=0.

    (2) 由于当 x \in(0,1) 时, 有 0 < f(x) < x, 现在让x \rightarrow 0^{+}, 由迫敛性可知\lim \limits_{x \rightarrow 0^{+}} f(x)=0, 再结合连续性,便有 f(0)=0,所以由泰勒公式可知
    f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+o\left(x^{2}\right)=x+\frac{f^{\prime \prime}(0)}{2} x^{2}+o\left(x^{2}\right)
    于是
    x f(x)=x^{2}+o\left(x^{2}\right), x-f(x)=-\frac{f^{\prime \prime}(0)}{2} x^{2}+o\left(x^{2}\right) .
    另外, 由 (1) 已知 \left\{a_{n}\right\} 严格单调递减趋近于 0 , 所以\left\{\frac{1}{a_{n}}\right\} 严格单调递增趋近于 +\infty, 那么由Stolz 公式可得
    \begin{aligned} \lim \limits_{n \rightarrow \infty} n a_{n} & =\lim \limits_{n \rightarrow \infty} \frac{n}{\frac{1}{a_{n}}}=\lim \limits_{n \rightarrow \infty} \frac{1}{\frac{1}{a_{n+1}}-\frac{1}{a_{n}}}=\lim \limits_{n \rightarrow \infty} \frac{a_{n} a_{n+1}}{a_{n}-a_{n+1}}=\lim \limits_{n \rightarrow \infty} \frac{a_{n} f\left(a_{n}\right)}{a_{n}-f\left(a_{n}\right)} \\ & =\lim \limits_{x \rightarrow 0} \frac{x f(x)}{x-f(x)}=\lim \limits_{x \rightarrow 0} \frac{x^{2}+o\left(x^{2}\right)}{-\frac{f^{\prime \prime}(0)}{2} x^{2}+o\left(x^{2}\right)}=-\frac{2}{f^{\prime \prime}(0)} . \end{aligned}

    注. 本题可以考虑 f(x)=\sin x, \ln (1+x), x(1-x), \arctan x 等特例.

分段法

  1. 求极限\lim \limits_{n \rightarrow \infty} n \int_{0}^{1} x^{n} e^{x} \mathrm{~d} x.

    解答. 首先注意到\lim \limits_{n \rightarrow \infty} n \int_{0}^{1} x^{n} e \mathrm{~d} x=\lim \limits_{n \rightarrow \infty} \frac{n}{n+1} e=e,下面证明
    \lim \limits_{n \rightarrow \infty} n \int_{0}^{1} x^{n} e^{x} \mathrm{~d} x=\lim \limits_{n \rightarrow \infty} n \int_{0}^{1} x^{n} e \mathrm{~d} x=e .\quad (4)
    为此, 只需证明
    \lim \limits_{n \rightarrow \infty} n \int_{0}^{1} x^{n}\left(e-e^{x}\right) \mathrm{d} x=0 .\quad (5)
    由于 e^{x}x=1 处连续, 所以对任意的 \varepsilon > 0, 存在\delta > 0 (限制 \delta < 1 ), 当 x \in[1-\delta, 1] 时, 有0 \leq e-e^{x} < \varepsilon,而\lim \limits_{n \rightarrow \infty}(1-\delta)^{n+1}=0, 所以存在正整数N, 使得 n > N 时, 有 (1-\delta)^{n+1} < \frac{\varepsilon}{e}, 进而
    \begin{aligned} 0 < n \int_{0}^{1} x^{n}\left(e-e^{x}\right) \mathrm{d} x & =n \int_{0}^{1-\delta} x^{n}\left(e-e^{x}\right) \mathrm{d} x+n \int_{1-\delta}^{1} x^{n}\left(e-e^{x}\right) \mathrm{d} x \\ & < n e \int_{0}^{1-\delta} x^{n} \mathrm{~d} x+n \varepsilon \int_{1-\delta}^{1} x^{n} \mathrm{~d} x \\ & =\frac{n}{n+1} e(1-\delta)^{n+1}+\frac{n}{n+1} \varepsilon\left[1-(1-\delta)^{n+1}\right] \\ & < e \cdot \frac{\varepsilon}{e}+\varepsilon < 2 \varepsilon . \end{aligned}
    这就说明 (5) 式成立, 进而 (4) 式也成立.

  2. f(x) \geq 0, g(x) > 0, 且它们都在 [a, b] 上连续, 证明\lim \limits_{n \rightarrow \infty}\left(\int_{a}^{b}(f(x))^{n} g(x) \mathrm{d} x\right)^{\frac{1}{n}}=\max _{x \in[a, b]} f(x) .

    解答. 不妨设 f(c)=\max _{x \in[a, b]} f(x), 其中 c \in(a, b),则对任意的 \varepsilon > 0, 由 f(x) 连续可知存在[\alpha, \beta] \subset[a, b],使得对任意的 x \in[\alpha, \beta],都有 f(x) \geq f(c)-\varepsilon. 于是
    \left(\int_{a}^{b}(f(x))^{n} g(x) \mathrm{d} x\right)^{\frac{1}{n}} \leq\left(\int_{a}^{b} f^{n}(c) g(x) \mathrm{d} x\right)^{\frac{1}{n}}=f(c)\left(\int_{a}^{b} g(x) \mathrm{d} x\right)^{\frac{1}{n}} .
    \left(\int_{a}^{b}(f(x))^{n} g(x) \mathrm{d} x\right)^{\frac{1}{n}} \geq\left(\int_{\alpha}^{\beta}(f(x))^{n} g(x) \mathrm{d} x\right)^{\frac{1}{n}} \geq\left(\int_{\alpha}^{\beta}(f(c)-\varepsilon)^{n} g(x) \mathrm{d} x\right)^{\frac{1}{n}}=(f(c)-\varepsilon)\left(\int_{\alpha}^{\beta} g(x) \mathrm{d} x\right)^{\frac{1}{n}} .
    g(x) > 0 可知 \int_{\alpha}^{\beta} g(x) \mathrm{d} x > 0, 于是\lim \limits_{n \rightarrow \infty}\left(\int_{\alpha}^{\beta} g(x) \mathrm{d} x\right)^{\frac{1}{n}}=1,从而存在 N > 0, 使得 n > N 时, 有f(c)-2 \varepsilon < \left(\int_{a}^{b}(f(x))^{n} g(x) \mathrm{d} x\right)^{\frac{1}{n}} < f(c)+2 \varepsilon这说明\lim \limits_{n \rightarrow \infty}\left(\int_{a}^{b}(f(x))^{n} g(x) \mathrm{d} x\right)^{\frac{1}{n}}=f(c)=\max _{x \in[a, b]} f(x) .

上极限与下极限

  1. 已知数列 \left\{x_{n}\right\},\left\{y_{n}\right\} 满足y_{n}=x_{n}+2 x_{n+1}, 证明 \left\{y_{n}\right\} 收敛时,\left\{x_{n}\right\} 也收敛.

    解答. 由于 \left\{y_{n}\right\} 收敛, 从而有界, 取正数 M 使得\left|y_{n}\right| \leq M\left|x_{1}\right| \leq M 同时成立.现在设 \left|x_{n}\right| \leq M, 由x_{n+1}=\frac{1}{2} y_{n}-\frac{1}{2} x_{n} 可知
    \left|x_{n+1}\right| \leq\left|\frac{1}{2} x_{n}\right|+\left|\frac{1}{2} y_{n}\right| \leq \frac{1}{2} M+\frac{1}{2} M=M .
    于是由数学归纳法可知 \left|x_{n}\right| \leq M 对任意的正整数 n都成立, 从而 \left\{x_{n}\right\} 存在有限的上极限与下极限, 分别记为\alpha, \beta, 同时记 \lim \limits_{n \rightarrow \infty} y_{n}=y.对等式 2 x_{n+1}=y_{n}-x_{n} 两端取上极限与下极限可得
    \left\{\begin{array}{l} 2 \alpha=\lim \limits_{n \rightarrow \infty} 2 x_{n+1}=\lim \limits_{n \rightarrow \infty} y_{n}+\lim \limits_{n \rightarrow \infty}\left(-x_{n}\right)=y-\lim \limits_{n \rightarrow \infty} x_{n}=y-\beta \\ 2 \beta=\lim \limits_{n \rightarrow \infty} 2 x_{n+1}=\lim \limits_{n \rightarrow \infty} y_{n}+\lim \limits_{n \rightarrow \infty}\left(-x_{n}\right)=y-\lim \limits_{n \rightarrow \infty} x_{n}=y-\alpha . \end{array}\right.
    由此可知,\alpha = \beta.这说明\{x_{n}\}也收敛.

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容