题目
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index
, provided that the nodes are numbered from 0 to N−1, and 0 is always the root. If one child is missing, then −1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
结尾无空行
Sample Output:
58 25 82 11 38 67 45 73 42
结尾无空行
思路
二叉排序树,给定结构建树,利用性质(二叉树的中序遍历结果就是升序序列)填充树,然后进行层次遍历即可。
根据题目输入形式,给定下标编号,静态方式实现树比较简单。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 103;
int len;
int indexs = 0;
int num[maxn];
vector<int> res;
struct node{
int data;
int leftchild;
int rightchild;
}Node[maxn];
void Inorder(int root) {
if (root == -1) return;
Inorder(Node[root].leftchild);
Node[root].data = num[indexs++];
Inorder(Node[root].rightchild);
}
void level(int root) {
queue<int> myqueue;
myqueue.push(root);
while (!myqueue.empty()) {
int now = myqueue.front();
res.push_back(Node[now].data);
myqueue.pop();
if (Node[now].leftchild != -1) myqueue.push(Node[now].leftchild);
if (Node[now].rightchild != -1) myqueue.push(Node[now].rightchild);
}
}
int main(){
cin>>len;
for (int i = 0; i < len; i++) {
cin>>Node[i].leftchild>>Node[i].rightchild;
}
for (int i = 0; i < len; i++) {
cin>>num[i];
}
sort(num, num+len);
Inorder(0);
level(0);
for (int i = 0; i < len; i++) {
cout<<res[i];
if(i != len - 1) cout<<" ";
}
}