概率论——大数定律

依据考研数学的安排,在学习大数定律之前引入这样两个先修知识点:

(1)切比雪夫不等式:P \{ | x - E ( x ) | \geq \varepsilon \} \leq \frac { D ( x ) } { \varepsilon ^ { 2 } }
,对任意的ε>0.

            它的意义是:事件大多会集中在它的期望附近

(2)依概率收敛:如果xn是一个随机变量序列、A是一个常数,对任意的ε>0,有

            \lim _ { n \rightarrow \infty } P \{ | x _ { n } - A | < \varepsilon \} = 1
,则称Xn依概率收敛于常数A

       依概率收敛并不同于传统意义上的“实验无数次后频率会无限靠近概率”,它实际上在概率附近划出了一个小的边界ε。实验结果当然可能发生波动,这个边界的作用就是把波动限制在一个很小的范围内。即使超出这个边界,也只是一个小概率事件。(小概率事件是指在一次实验中几乎不可能发生的事件,而在重复实验中一定会发生。)

接着看大数定律:

(1)切比雪夫大数定律:\lim _ { n \rightarrow \infty } P \{ | \frac { 1 } { n } \sum _ { i = 1 } ^ { n } x _ { i } - \frac { 1 } { n } \sum _ { i = 1 } ^ { n } E ( x _ { i } ) | < \varepsilon \} = 1

    这里显然是不严谨的,因为为了方便表述我们省略掉了一些前提条件,好在并不影响对于这个定律本身的理解。

    它的数学意义显而易见:算数平均值依概率收敛于数学期望。当我们中学做的物理实验中采用多次实验取平均值的方法来减小误差时,实际上理论依据就是切比雪夫大数定律。

(2)伯努利大数定律:\lim _ { n \rightarrow \infty } P \{ | \frac { x _ { n } } { n } - p | < \varepsilon \} = 1

    伯努利大数定律的条件是Xn服从B(n,p),也就是说Xn是n重伯努利实验中事件发生的次数,它的数学意义是频率依概率收敛于统计概率。伯努利大数定律实际上是切比雪夫大数定律的一种特殊情况。

(3)辛钦大数定律:\lim _ { n \rightarrow \infty } p \{ | \frac { 1 } { n } \sum _ { i = 1 } ^ { n } x _ { i } - \mu | < \varepsilon \} = 1

    辛钦大数定律在表述上和切比雪夫相差不多,但它的特点在于要求Xi独立同分布,并且要存在期望。

(4)棣莫弗——拉普拉斯中心极限定理

    设随机变量Xn服从B(n,p),则对于任意实数x,有\lim _ { n \rightarrow \infty } p \{ \frac { x _ { n } - n p } { \sqrt { n p ( 1 - p ) } } \leq x \} = \Phi ( x )
,其中φ(x)是标准正态的分布函数。

    结论:Xn近似服从于N(np,np(1-p))

(5)列维——林德伯格中心极限定理

    条件:Xn独立同分布、期望和方差存在,有 \lim _ { n \rightarrow \infty } p \{ \frac { \sum _ { i = 1 } ^ { n } X _ { i } - n \mu } { \sqrt { n } \sigma } \leq x  \} = \Phi ( x )
 

    结论:\sum_{i=1}^n X_{i}  近似服从于N(nμ,n\sigma ^2)

我们先给出这两个中心极限定理,可能不太好懂,好在他们之间有很深的关系,或者说棣莫弗实际是列维的特殊情况(服从B(n,p))。有了上述的两个中心极限定理,我们就可以在n很大的情况下把任意一个复杂的分布近似地看作一个正态分布,大大减少了分析的难度。(当然,要符合前提条件)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容