重大数学问题联合表示m理论

参见百度百科【重大数论问题联合表示m理论】

一,数论的最高境界就是应用于实际并且把许许多多的问题融合在一起

(一),从四色定理开始

法兰西斯古德里于1831年生于伦敦,在1852年提出的猜想,只需要四种颜色为地图着色。这是因为他发现在平面上或者球面上,只能有4个区域两两相连,英国数学家德摩根证明了平面上不存在5个区域两两相连。

1974年德国的林格和美国的杨斯证明了在曲面上染色定理,例如,在一个汽车轮胎形状的环面(亏格1)需要7种颜色,因为可以构造7个两两相连的区域,6种颜色肯定不够的;在有两个洞的双环面需要8种颜色,因为可以构造8个两两相连的区域,7种颜色肯定不够的;....。(具体图像参见百度百科“7色定理,8色定理,9色定理,10色定理,11色定理,....等”)或者本栏目

【霍奇猜想有什么用】

(二),岐管

数学家证明了可以构造无穷多个两两相连的区域,这样的区域就是岐管。(见下图)如果你不能理解,让我慢慢道来:现在有两根管子,一个记为1,一个记为2,它们代表两个区域。

我们假定所有的管子都是可以随意拉伸和弯曲的。

把两根管子端端相连,就是一个汽车轮胎一样的环,它有两个区域,我们再用一根直管子记为3,安在这个环的中间,一头连着区域1,一头连着区域2,现在它是有两个洞的双环了,有三个区域两两相连(参见百度百科【霍奇猜想应用】。

现在我们用一个“丁”字型的三叉管,记为区域4,三个端口分别与区域1,区域2,区域3相连。于是现在有4个区域两两相连;

我们再用一根四叉管记为区域5。它4个端口分别与区域1,2,3,4相连,现在有5个区域两两相连。

这个步骤可以无限制进行下去,用五叉管,六叉管,...,n叉管。构造无穷多个区域,它们都是两两相连的。

数学家和物理学家把这个叫做岐管。岐管是一种不规则的管道,可以有无穷多个维度(参见智慧火花物理学栏目【空间的维度】)。如果每一个区域给定一个点,两两相连的点就构成了货郎担问题。

二,与数论重大问题联系

在数论中,最重要的元素就是素数,欧几里得证明了有无穷多个素数,并且它们有一个特点就是两两互素。

(一)我们设法把数论与图论联系起来。

我们把无穷多个两两互素的素数与无穷多个两两相连区域一一对应。

就是说用这个方法把数论与图论联系起来,这个方法的意图叫做朗兰兹纲领。

区域1,代表第一个素数2;第二个区域代表第二个素数3;第三个区域代表素数;...,第n个区域代表第n个素数。

我们把这个岐管倒过来,就像一个网子,篮球网子。篮球网子是把篮球往里面投。

公元前300年古希腊有一个数学家叫做埃拉特斯特尼,他把这个网子当成筛子,把自然数往里面扔,他说凡是合数通过筛子以后就会从网子里面筛掉,留下的是素数,这个就是著名的埃拉特斯特尼筛法,筛法可以用公式表达(参见百度百科词条【素数普遍公式】)。

1,与哥德巴赫猜想联系一起了

我们上面这个岐管筛子是把偶数往里面扔,哥德巴赫说,大于4的偶数一个也不会漏出筛子,除了6=3+3以外,其他偶数都是可以在不同的素数区域被拦截。例如偶数8会在区域2也就是素数3和素数5(第三个区域)被拦截;偶数10会在素数3和素数7的两个区域之间被拦截;...。总之,无穷多个偶数都逃不脱这个网子,没有一个偶数可以漏到外面去。

看到没有?数论与图论已经融合一起了

2,与费马大定理联系一起

这个还不算神奇,这个岐管的内部空间我们记为X,外部空间记为Y,它有很多洞,可以有无穷多个洞,可以有无穷多个空间维度n,,宇宙内外整体记为1,

就是说这个叫做费马曲线,它是由费马大定理

同时除以

得到的。

费马大定理与哥德巴赫猜想联系起来了。

3,这个岐管是多维空间

物理学家认为,宇宙是10维空间或者11维空间,或者26维空间等5个版本。还有物理学家认为有无穷多个维度的空间。他们管这个理论叫做弦理论或者M理论,是把广义相对论与量子理论结合一起的终极理论,霍金说是最后的理论(参见智慧火花物理学栏目【空间的维度】)。

在弦/m理论的11维空间里,有4维空间的伸展,7维空间卷缩起来的。 几何体的拓扑性质同粒子紧密相关。例如,这种粒子几何体有几个洞,决定着粒子世代的数目,在这些卷缩维度的空间里所采取的几何构型决定着弦或者膜能够有什么样的震动模式,从而决定着各种粒子的质量、自旋、以及电荷等各种相互作用的耦合常数。

原来,不仅仅自旋和同位旋等内部变量和内部空间都出自这些多维空间的几何学,而且粒子的电荷质量等性质,无一不是从这里产生出来的,不仅仅如此,人类生活本身也通过三维空间和一维时间都是从类似的几何体的构造中生长出来的。 我们生活在高维宇宙的一小片中,大到银河宇宙,小至原子夸克,都是 弦线构成的。

4,与黎曼猜想联系起来

数学家考虑的是怎样计算这个岐管上的区域或者计算区域上面的一个点(就是计算我们的宇宙定位系统)。如果岐管上某一个区域K,在K上的一个点是

,因为这个岐管有无穷多个维度,或者很多维度,我们要定位这个点,就要考虑它的管壁-----实部,还有考虑它的内外空间位置-----虚部。

所以

,这个点的S=α+βi。

i是虚数,α表示实部是1/2,因为这个多维宇宙等于1,岐管属于实部,管壁在X与Y之间,管壁内与外都是无法计算大小的空间,我们只能将管壁定义为1/2.。实部上的点当然是1/2。这个正是黎曼函数黎曼猜想:


将公式转换

.

素数部分与上面的哥德巴赫猜想对应。因为,歧管每一个区域表示素数2,3,5,7,....。歧管中任何一点都要受到歧管整体区域的影响。

黎曼猜想说全部零点都在实部的1/2的临界带上。在物理学中,真空是能量的“零点”。我们如果在岐管壁上画出一条线,这根线段就用到黎曼猜想的公式计算。天啊,黎曼猜想的公式可以用几何拓扑的歧管构造出来!

黎曼猜想与费马大定理联系起来了(参见智慧火花物理学栏目【两个数论黑洞合并以后产生的引力波】)。

5,与欧拉公式联系起来

与欧拉公式联系起来,虚部怎么计算呢?岐管内部看成一个圆管,在岐管上的一个点k为做一个截面,就是一个圆。大家知道欧拉公式吗?

开始,以相对速度π,走了i时间(参见百科百科“虚时间”),再加1,回到原点

包含了时间(时间有虚的涵义)和空间。

三,与宇宙学联系起来

与宇宙学联系起来。

将圆周率π=3.1415927....。

用两个数值表示,例如:π=3.1415927...=4-0.8584073....

于是欧拉公式

:转换成为

这个公式可以表示:

这个公式太离谱了,但是却是事实!

公式右边移到左边等于0,

就是物质与反物质相遇就会湮灭。

四,与量子纠缠联系起来

当速度大于π时,时间就会走过头了,落入第三象限。欧拉公式是将指数函数,解析延拓到整个复平面上。虚时间就是公式物理学中出现这种情况:不同时代的人在一个特殊的空间相会,例如今天的人

与3000年前的人

相遇(或者今天的人与未来的人相遇),我们会感觉到什么?等于0!

上式可以刻画量子纠缠——在同一时间两个正负不同的光量子对应。

我们的宇宙是由数学最经典的问题和物理学最经典的问题组成的。

五,与m理论联系起来

我们生活在费马大定理的宇宙中,出门旅行计算路程需要黎曼猜想,在欧拉公式的参与下,穿过哥德巴赫猜想的虫洞。一具复杂的岐管,包含了一个超级几何拓扑构造,需要一系列重大数论问题联合表示。局部区域可以按照素数普遍公式计算(详见百度百科【素数普遍公式】)即使不是与物理学联系,也是非常重要的。朗兰兹纲领就是企图将各种不同的数学几何体系融合一体。

六,这一切都是上帝安排的?

最复杂的宇宙空间离不开最简单的自然数表达,最简单的自然数又被最难以理解的素数控制着,空间区域可以构造出无穷多个两两相连的最短通路,与最简单的素数——无穷多个素数两两互素可以一 一对应。

数论与图论与相对论量子纠缠的虫洞居然可以在一个科学范围里讨论。

让我惊奇的是,几乎所有的事物,都可以被数学解释!

殷殷地球,抚育人类成长的摇篮,无不被数学渗透,林立的高楼,纵横的公路铁路,深海的钻探,太空的揽月,晶体雪花,漩涡星云,宏观到时空转换,微观到粒子等级跃跹概率,基因DNA的扭结,,,没有一项离开数学。

基础创造具有决定性的地位,要是没有阿波罗尼以透彻,漂亮的代数形式研究了圆锥曲线的几何特性,伟大的天文学家开普勒也许就不会发现他的行星运动规律(定律)。也许我们就不会生活在网络时代,牛顿也不可能系统地提出万有引力,爱因斯坦也没有必要发现相对论向牛顿挑战。

面对玄僪莫测的宇宙之谜,一个具有自由意志的人,一个不愿被宿命论困死的人,一个不满足神学解释听命与上帝摆布的人,除了求助于科学理性思维,没有更加好的出路。

在人类历史中,数学总是走在其它学科的前头:化学,物理学,生物学,。。。。也只有几百年的历史,而欧几里德的数学体系已经存在2000多年。早在300多年前数理逻辑就为但今计算机准备好了理论基础,20世纪最伟大的相对论,其数学基础产生于19世纪的黎曼几何,杨振宁规范场出现之前5年,陈省身的纤维从理论就已经为它铺好了温床。

作为意识形态的数学总是超越社会存在而走在前头,拓扑学过去认为用处不大,现在电路分析上少不了它;群论空洞而抽象,一直认为没有用处,现在在结晶学上却离不开;素数是纯之又纯的东西,已经成为密码学里的主力军,关系到国家的安全;由于素数的非循环性,仿生学用于回避灾难的研究,在社会科学的决策中,具有具足轻重的作用。更不要说3000年前的圆周率竟然是人口学的工具。数学总是以青春的热情来欢迎时代的每一种进步,并以为自己有责任来推动这种变革。

————————————————

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容