https://blog.csdn.net/qq_36962569/article/details/79881065
https://blog.csdn.net/sinat_26917383/article/details/75199996?locationNum=3&fps=1
分类算法的效果评估
1,准确率accuracy_score
from sklearn.metrics import accuracy_score
2,精确率/查准率precision_score
from sklearn.metrics import precision_score
分为宏平均(macro)和微平均(micro),宏平均比微平均更合理。
metrics.precision_score(y_true, y_pred, average='micro')
metrics.precision_score(y_true, y_pred, average='macro')
其中average参数有五种:(None, ‘micro’, ‘macro’, ‘weighted’, ‘samples’)
3,召回率/查全率recall_score
from sklearn.metrics import recall_score
召回率也有宏平均和微平均的区别,和上面的用法一样。
4,F1-score
from sklearn.metrics import f1_score
metrics.f1_score(y_true, y_pred, average='weighted')
5,混淆矩阵(confusion-matrix)
from sklearn.metrics import confusion_matrix
6,分类报告(classification_report)
from sklearn.metrics import classification_report
包含precision/recall/f1-score/均值/分类个数
7,kappa score
from sklearn.metrics import cohen_kappa_score
cohen_kappa_score(y_true, y_pred)
8,ROC
1,计算ROC值
from sklearn.metrics import roc_auc_score
roc_auc_score(y_true, y_scores)
2,画ROC图
具体画ROC图的方法请参照官方给出的代码
http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
9,距离
1,海明距离(hamming_loss)
from sklearn.metrics import hamming_loss
hamming_loss(y_true, y_pred)
2,Jaccard距离(jaccard_similarity_score)
from sklearn.metrics import jaccard_similarity_score
jaccard_similarity_score(y_true, y_pred)
-------------------------------------回归算法的评价指标------------------------------------
1,可释方差也叫解释方差(explained_variance_score)
from sklearn.metrics import explained_variance_score
explained_variance_score(y_true, y_pred)
2,平均绝对误差(mean_absolute_error)
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_true, y_pred)
3,均方误差(mean_squared_error)
from sklearn.metrics import mean_squared_error
mean_squared_error(y_true, y_pred)
4,中值绝对误差(median_absolute_error)
from sklearn.metrics import median_absolute_error
median_absolute_error(y_true, y_pred)
5,R方值,确定系数(r2_score)
from sklearn.metrics import r2_score
r2_score(y_true, y_pred)