云计算、雾计算、边缘计算到底是怎么回事?

姓名:殷晨阳

转载自:http://mp.weixin.qq.com/s/1JYOvPZzVdCVSDKbqFsfdA有改动

【嵌牛导读】:为了解决网络服务器的压力,人们发明出了云计算、边缘计算、雾计算等概念。然而初学者们容易混淆它们的概念以及它们之间的联系。对此,本文对云概念等的定义以及作用方式进行了较为详细的阐述。

【嵌牛鼻子】:云计算;边缘计算;雾计算;

【嵌牛提问】:雾计算是如何对服务器运行起到支撑作用的?

雾计算和边缘计算还可进行哪些方面的发展?

【嵌牛正文】:

物联网产生了前所未有的大量数据,进而对网络结构产生巨大的压力。这些年,各种“计算”层出不迭,网格计算、云计算、雾计算、霾计算、边缘计算…即便身处ICT行业,也很容易被这些不同的计算搞的云山雾罩。

那么它们到底是怎么产生的?有何意义?彼此间又有哪些区别呢?接下来为大家一一盘点。

云计算

什么是云计算?维基百科是这样解释的:云计算是基于网络提供的按需的、共享的、可配置的计算以及其他资源。这种方法很像是自来水的供应,人们只需拧开水龙头就可以使用提供的资源,而不必自己去建立一个大而复杂的管道。

从计算方式上来讲,云计算是云+端的模式。用户的个人智能客户端通过网络连接到云上,从而与云端的“云”共同形成一个综合的平台,客户端可以是多样的,它既可以是电脑、平板,也可以是手机,甚至汽车等。

早期的每一个网站背后,都有一台服务器。后来,上网的群众越来越多,服务器开始吃不消了,为了能让网站正常运行,不得不用更好更多的服务器。但事实上这样的效果并不好,过度繁重的结构加大了网站设计和构架的难度,而且越是复杂的系统越是不稳定。有可能一个出问题,这样一个完整的系统就彻底挂掉。

人们想,那我不用这么乱七八糟复杂的系统,上一个极其牛逼的服务器不就好了?可是,太贵了……

于是人们突然想到了一个好办法:把所有计算资源集结起来看成是一个整体(一朵云),每个操作请求都可以按照一定的规则分割成小片段,分发给不同的机器同时运算,每个机器其实只要做很小的计算就可以,哪怕是很落后的机器都能轻松完成。云计算把用户的任务请求做除法,一个请求进来,我们把它变成许多个小任务段,最后汇总出去给用户一个完整的结果。云计算发展

云计算这个词最早来源于2006年8月9日,在一次搜索引擎大会上,Google首席执行官Eric Schmidt首次提出了“云计算”(Cloud Computing)这一概念。

虽然是由Google最先倡导,但是真正把云计算用于大规模商用的公司是亚马逊,并且早在Google提出云计算的概念之前,亚马逊于2002年就推出了Amazon Web Service服务产品。

十几年前亚马逊还只是一个线上书店,远见卓识的CEO要求亚马逊必须提供一个基础平台,所有团队的程序模块都要以通过Service Interface方式将其数据与功能开放出来。所有的Service Interface,都必须从骨子里到表面上设计成能对外界开放的。团队间的程序模块的信息通信,都要通过这些接口。

经历数年的演化,这套基础平台(AWS前身)不仅很好的服务亚马逊自身,还为以后的AWS奠定了扎实的技术和产品基础。和双十一类似,亚马逊也有Black Friday等促销节日,促销时的流量比平常高出数倍乃至数十倍,所以亚马逊购置了大量的服务器等IT资源,当促销过去后,这些IT资源多处于闲置状态,造成严重的浪费。

为了充分利用这些IT设施,亚马逊开始将这套平台(AWS)对外开放,允许小企业和私人租用亚马逊的计算机来运行它们自己的应用。随后,亚马逊在云业务方面的商业成功超出所有人的想象,收入年年创新高,成为业界的领头羊。而亚马逊在云计算的服务产品也成为其它云计算服务商的效仿对象。

到2008年,几乎所有的主流IT厂商开始谈论云计算,这里既包括

硬件厂商:IBM、HP、Intel、思科、SUN等;

软件厂商:微软、Oracle、VMware等;

互联网公司:Google、亚马逊等;

以及电信运营商:中国移动、中国电信、AT&T等。

不过云计算的发展也是磕磕盼盼,直到近几年才被市场普遍接受。

如果从亚马逊AWS S3服务商用算起,云计算行业已经发展了十年,市场格局、竞争态势较为明朗。不过中国市场起步相对较晚,目前仍处于快速增长阶段,企业众多。

边缘计算

边缘计算(Edge computing)是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。

边缘计算由来

边缘计算是近几年才兴起的一个概念,它的出现是源于云计算在实际运用中的不足。

如:制造业打造智能工厂时,会有大量的智能化终端和设备通过工业网络接入,企业需要计算和处理的日常业务数据越来越庞大。同时,工业上有大量需要实时处理的场景,需要在毫秒级别进行实时响应。由于网络的限制,云计算架构难以实现实时响应。

无人汽车需要在高速移动状态对周围环境做出反应,所以响应时间是个极其重要的指标。假设汽车行驶速度为65英里每小时,紧急制动响应时间即便只慢了几毫秒,汽车紧急制动距离就会多出几英尺,这或许就是发生事故和没有发生事故的区别。

油气行业也致力于实现油气田智慧化运营。通过大量传感器,对油田生产数据实现自动化采集,可以大幅减少人力。但如果每个传感器都向云端发送联接,这将给网络带来巨大压力,同时油气行业的应用场景中,网络连接并不稳定。

从上述场景中不难发现,随着大量传感器、智能化终端等网络边缘侧设备的连接,产生着大量的实时数据,如果把这些数据的分析处理等都放到云端,既会带来高昂的带宽成本,又难以满足边缘侧的业务实时性。同时,边缘侧数据对很多行业都是高度敏感和关键的,这些数据放到云端存在安全与隐私方面的风险。

于是,边缘计算这个新的计算模型应需而生。

边缘计算发展

边缘计算的目标是解决各个行业通过物联网技术实现数字化和智能化转型中的所遇到的五大难题,这也正是边缘计算的价值所在。

边缘计算环境是构成物联网生态系统的诸多元素的一个子集,它剔除了管理、安全和分析功能。边缘计算整个体系中包含了四个关键部分:智能设备(资产)、智能网关、智能系统、智能服务,它是联接物理世界和虚拟世界的一道“桥梁”。

边缘计算是一个新兴的产业,为了推动产业发展,尽快实现商用落地,去年11月30日,多家企业、行业组织发起成立了边缘计算产业联盟(ECC),历经短短一年的发展,联盟现已拥有154家成员单位。

另外今年4月,Linux基金会发布了一个开源物联网边缘计算项目:EdgeX Foundry。它是第一个超大型物联网边缘运算项目,目的是要打造一套通用边缘运算框架,围绕可互操作的即插即用部件打造一个生态系统。

雾计算

雾计算(Fog Computing)中雾的命名源自“雾是更贴近地面的云”,它的理念跟 边缘计算 差不多,但是两者数据的收集,处理,通信的方法并不不同。

通常来说,雾计算环境由传统的网络设备组件,如:路由器、开关、机顶盒、本地服务器、基站等构成,可以安装在离物联网终端设备和传感器较近的地方。这些组件可以提供不同的计算、存储、网络功能,支持服务应用的执行。所以,雾计算依靠这些组件,可以创建分布于不同地方的云服务。

雾计算与边缘计算的区别

雾计算的处理能力放在包括IoT设备的局域网里面,网络内的IoT网关,或者说是雾节点用于数据收集,处理,存储。多种来源的信息收集到网关里,处理后的数据发送回需要该数据的设备。

雾计算的特点是处理能力强的单个设备接收多个端点来的信息,处理后的信息发回需要的地方。

而边缘计算,进一步推进了雾计算的的理念,处理能力更靠近数据源,不是在中央服务器里整理后实施处理,而是在网络内的各设备实施处理。通过把传感器连接到可编程自动控制器(PAC)上,使处理和通信的把握成为可能。

和雾计算相比的优点,根据它的性质单一的故障点比较少。各自的设备独立动作,可以判断什么数据保存在本地,什么数据发到云端。

以吸尘器为例说明:

雾计算集中化的雾节点(IoT网关)继续从家中的传感器收集信息,检测到垃圾的话就启动吸尘器。

边缘计算的解决方案里传感器各自判断有没有垃圾,来发送启动吸尘器的信号。

和边缘计算相比较的话,雾计算更具备可扩展性。具有集中处理的设备,设想的网络是从多个端点发送数据的大的网络。

雾计算不需要精确划分处理能力的有无。根据设备的能力也可以执行某些受限处理,但是更复杂的处理实施的话需要积极的连接。

雾计算发展

2010年11月28日,“维基揭秘”网站发布了25万余份美国国务院机密文件,将诸多美国外交内幕和盘托出,爆出了美国历史上也是世界历史上最大规模的泄密事件。紧接着又集中爆发了一连串的网络个人信息泄露事件,日益严重的数据泄露引发了各界关注。

最初“雾计算”这个名字还是由美国纽约哥伦比亚大学的斯特尔佛教授(Prof. Stolfo)起的,不过他当时的目的是利用“雾”来阻挡黑客入侵。显然,这与我们现在所讲的“雾计算”有着巨大的差距。

我们现在所熟知的“雾计算”这个概念是由思科首创,2015年11月,ARM、戴尔、英特尔、微软等几大科技公司以及普林斯顿大学加入了这个概念阵营,并成立了非盈利性组织OpenFog Consortium (开放雾联盟),旨在推广和加快开放雾计算的普及,促进物联网发展。目前,联盟已经有了60名成员。

有云就有雾,有雾就有霾,有了云计算和雾计算之后,“霾计算”这种比较奇葩的概念也顺理成章地诞生了。边缘计算的概念出来后,接着又有新的几种计算冒了出来,其中包括移动边缘计算(MEC)和移动云计算(MCC),作为云计算和边缘计算的扩充。

有理由相信,接下来还会不断地出现新概念,但云、雾、边缘三大主流技术会长期存在,能理解这三者,就不会再被其它技术弄晕了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容