SARS2

继续复现巨噬细胞部分

#载入R包
if(!require(Seurat))
  BiocManager::install("Seurat")
if(!require(scales))
  BiocManager::install("scales")
library(Seurat)
if(!require(tidyverse))
  BiocManager::install("tidyverse")
library(tidyverse)
# if(!require(ggpubr))
#   BiocManager::install("ggpubr")
library(ggpubr)
library(cowplot)
library(dplyr)
library(ggplot2)
library(tidyr)
Sys.setenv(LANGUAGE="en")#显示英文报错信息
options(stringsAsFactors =FALSE)#禁止chr转成factor
#rm(list =ls())
setwd("~/Rdata/sars_scRNA/")
MP <- readRDS("GSE171828_Seurat_object_monocyte_macrophage_DC.Rds")
#An object of class Seurat 
#38397 features across 40241 samples within 2 assays 
#Active assay: SCT (18694 features, 3000 variable features)
# 1 other assay present: RNA
# 9 dimensional reductions calculated: pca, umap, umap10, #umap11, umap12, umap13, umap12n, umap10n, umap11n

MP↓

可以看到,读入的巨噬细胞数据已经过SCTransform(),结果储存在MP@assays[["SCT"]]中,使用正则化的负二项式模型 (regularized negative binomial model) 对UMI计数进行建模,以去除测序深度(每个细胞的总nUMI)引起的变异。与lognormalize归一化方法相比,集成了Normalizedata(),FindVariableFeatures(),ScaleData()三个函数的功能。

## 细胞簇命名
MP$Annotation <- as.character(MP$Annotation)
MP$Annotation[MP$Annotation == "APOE pos FABP4 high tissue M2"] <- "APOE+ tissue macrophage"
MP$Annotation[MP$Annotation == "SPP1 high fibrogenic M2"] <- "SPP1hi CHIT1int profibrogenic M2"
MP$Annotation[MP$Annotation == "Transitional M1"] <- "Weakly activated M1"
MP$Annotation[MP$Annotation == "Interferon stimulated M1"] <- "Highly activated M1"
MP$Annotation[MP$Annotation == "Infiltrating macrophage"] <- "Monocyte-derived infiltrating macrophage"
#MP$Annotation[MP$Annotation == "APOE pos FABP4 high tissue M2"] <- "APOE+ tissue macrophage"

#FABP4+DDX60−macrophages (resting tissue macrophages)
#APOE+macrophages 
#FABP4+DDX60+macrophages (activated tissue macrophages) #SPP1hiCHIT1intM2(potentially  profibrogenic)
#DDX60+CHIT1hi macrophages(monocyte-derived infiltrating)
#CSF3R+IL1B+ISG15−(weaklyactivated M1)
#CSF3R+IL1B+ISG15+(highly activated M1)
#proliferating  macrophages 
#engulfing  macrophages
#unclassified cells 
## Fig3a巨噬细胞亚群的UMAP图
pdf("Fig3a.MP_umap_seurat_clusters.pdf",900/72*0.8, 688/72*0.8) 
DimPlot(MP,group.by = "Annotation", label=T)
dev.off()
goi <- c("FABP4","PPARG","APOE","APOC1","DDX60","SPP1","CSF3R","IL18","RGS2","ISG15","CHIT1","STAB1","TOP2A","WFDC2")
p <- DotPlot(
  MP,
  features = rev(goi),
  cols = c("lightgrey", "black"),
  col.min = -2.5,
  col.max = 2.5,
  dot.min = 0,
  dot.scale = 6,
  group.by = NULL,
  split.by = NULL,
  scale.by = "size",
  scale.min = NA,
  scale.max = NA
)
p$data$id = factor(p$data$id, levels(MP) %>% rev)
pdf("Fig3b.dotplot.pdf",7.5*1.2,5*1.2)
p + theme(axis.text.x = element_text(angle = 90, hjust = 1))
dev.off()
## Fig3c巨噬细胞比例
colorder = c("Ctrl-1","Ctrl-2","Ctrl-3",
             "C2-1","C2-2","C2-3",
             "C5-1","C5-2", "C5-3","C5-4")

x <- table(MP$Annotation,MP$Sample_name)
x <- x[, colorder]
x3= t(t(x)/rowSums(t(x)))

x4 = as.data.frame(as.table(t(x3)))
colnames(x4) = c("sample","celltype","Freq")
x4$group = x4$sample %>% str_replace("-.*","")
x4$group = factor(x4$group, levels = c("Ctrl","C2","C5"))

top<-function(x){
  return(mean(x)+sd(x)/sqrt(length(x)))
}
bottom<-function(x){
  return(mean(x)-sd(x)/sqrt(length(x)))
}
dose_Ctrl<-x4[which(x4$group=="Ctrl"),]
dose_C2<-x4[which(x4$group=="C2"),]
dose_C5<-x4[which(x4$group=="C5"),]
#pdf("Fig3c.proportion_each_cluster.pdf",900/72*0.8, 688/72*0.8) 
p1=ggplot(data=dose_Ctrl,aes(x=celltype,y=Freq,fill=celltype))+
  stat_summary(geom = "bar",fun = "mean",
               position = position_dodge(0.9))+
  stat_summary(geom = "errorbar",
               fun.min = bottom,
               fun.max = top,
               position = position_dodge(0.9),
               width=0.2)+
  scale_y_continuous(expand = expansion(mult = c(0,0.1)))+
  theme_bw()+
  theme(panel.grid = element_blank(),
        #legend.position = "",
        axis.text.x.bottom =   element_text(angle = 90,hjust = 1))+
  labs(x="Celltype",y="Proportion")+
  geom_point(data=dose_Ctrl,aes(celltype,Freq),size=3,pch=19) 
p1
p2=ggplot(data=dose_C2,aes(x=celltype,y=Freq,fill=celltype))+
  stat_summary(geom = "bar",fun = "mean",
               position = position_dodge(0.9))+
  stat_summary(geom = "errorbar",
               fun.min = bottom,
               fun.max = top,
               position = position_dodge(0.9),
               width=0.2)+
  scale_y_continuous(expand = expansion(mult = c(0,0.1)))+
  theme_bw()+
  theme(panel.grid = element_blank(),
        #legend.position = "",
        axis.text.x.bottom =   element_text(angle = 90,hjust = 1))+
  labs(x="Celltype",y="Proportion")+
  geom_point(data=dose_C2,aes(celltype,Freq),size=3,pch=19) 

p3=ggplot(data=dose_C5,aes(x=celltype,y=Freq,fill=celltype))+
  stat_summary(geom = "bar",fun = "mean",
               position = position_dodge(0.9))+
  stat_summary(geom = "errorbar",
               fun.min = bottom,
               fun.max = top,
               position = position_dodge(0.9),
               width=0.2)+
  scale_y_continuous(expand = expansion(mult = c(0,0.1)))+
  theme_bw()+
  theme(panel.grid = element_blank(),
       # legend.position = "",
        axis.text.x.bottom =   element_text(angle = 90,hjust = 1))+
  labs(x="Celltype",y="Proportion")+
  geom_point(data=dose_C5,aes(celltype,Freq),size=3,pch=19)
#dev.off()
plot_grid(p1,p2,p3,nrow = 1)

## Fig3d 巨噬细胞热图
MPcov <- readRDS("GSE171828_Seurat_object_total_cells.Rds")
Idents(MPcov) <- "Annotation"
#使用FindMarkers函数针对感兴趣的细胞亚群,去寻找它与其它所有的亚群,表达有差异的基因
Dump <- c("CD8 T cell","CD4 T cell","Epithelial cell","RBC","Plasma cell","B cell") %>%
  lapply(function(x){FindMarkers(MPcov, ident.1 = x,only.pos = T, min.pct = 0.3)}) %>%
  do.call(rbind,.
rm(MPcov)
Dump$gene = rownames(Dump)
#save(Dump,file = "Dump.rda")
head(Dump)
> head(Dump)
       p_val avg_log2FC pct.1 pct.2 p_val_adj   gene
ADAM19     0  0.4007372 0.328 0.048         0 ADAM19
CYFIP2     0  0.5308454 0.531 0.141         0 CYFIP2
ANXA6      0  0.8503237 0.787 0.217         0  ANXA6
FYB1       0  0.3901199 0.994 0.876         0   FYB1
IL7R       0  0.6734843 0.860 0.360         0   IL7R
THEMIS     0  0.4942087 0.420 0.051         0 THEMIS
MP@misc$Dump = Dump #这里没看懂啊
markers_to_show <- FindAllMarkers(MP, only.pos = T)
markers_to_show_2 <- markers_to_show %>% arrange(desc(avg_log2FC)) %>% 
  {.[!duplicated(.$gene),]} %>%
  dplyr::filter(!gene %in% MP@misc$Dump$gene,
                !grepl("ENSMPUG",gene),
                !cluster == "Unclassified",
                pct.2<0.8) %>%
  group_by(cluster) %>% dplyr::slice(1:20)#每个细胞按照avg_log2FC大到小排列 显示前20个

suppressPackageStartupMessages({
  library(rlang)
})
library(grid)
DoMultiBarHeatmap <- function (object, 
                               features = NULL, 
                               cells = NULL, 
                               group.by = "ident", 
                               additional.group.by = NULL, 
                               additional.group.sort.by = NULL, 
                               cols.use = NULL,
                               group.bar = TRUE, 
                               disp.min = -2.5, 
                               disp.max = NULL, 
                               slot = "scale.data", 
                               assay = NULL, 
                               label = TRUE, 
                               size = 5.5, 
                               hjust = 0, 
                               angle = 45, 
                               raster = TRUE, 
                               draw.lines = TRUE, 
                               lines.width = NULL, 
                               group.bar.height = 0.02, 
                               combine = TRUE) 
{
  cells <- cells %||% colnames(x = object)
  if (is.numeric(x = cells)) {
    cells <- colnames(x = object)[cells]
  }
  assay <- assay %||% DefaultAssay(object = object)
  DefaultAssay(object = object) <- assay
  features <- features %||% VariableFeatures(object = object)
  features <- rev(x = unique(x = features))
  disp.max <- disp.max %||% ifelse(test = slot == "scale.data", 
                                   yes = 2.5, no = 6)
  possible.features <- rownames(x = GetAssayData(object = object, 
                                                 slot = slot))
  if (any(!features %in% possible.features)) {
    bad.features <- features[!features %in% possible.features]
    features <- features[features %in% possible.features]
    if (length(x = features) == 0) {
      stop("No requested features found in the ", slot, 
           " slot for the ", assay, " assay.")
    }
    warning("The following features were omitted as they were not found in the ", 
            slot, " slot for the ", assay, " assay: ", paste(bad.features, 
                                                             collapse = ", "))
  }
  
  if (!is.null(additional.group.sort.by)) {
    if (any(!additional.group.sort.by %in% additional.group.by)) {
      bad.sorts <- additional.group.sort.by[!additional.group.sort.by %in% additional.group.by]
      additional.group.sort.by <- additional.group.sort.by[additional.group.sort.by %in% additional.group.by]
      if (length(x = bad.sorts) > 0) {
        warning("The following additional sorts were omitted as they were not a subset of additional.group.by : ", 
                paste(bad.sorts, collapse = ", "))
      }
    }
  }
  
  data <- as.data.frame(x = as.matrix(x = t(x = GetAssayData(object = object, 
                                                             slot = slot)[features, cells, drop = FALSE])))
  
  object <- suppressMessages(expr = StashIdent(object = object, 
                                               save.name = "ident"))
  group.by <- group.by %||% "ident"
  groups.use <- object[[c(group.by, additional.group.by[!additional.group.by %in% group.by])]][cells, , drop = FALSE]
  plots <- list()
  for (i in group.by) {
    data.group <- data
    if (!is_null(additional.group.by)) {
      additional.group.use <- additional.group.by[additional.group.by!=i]  
      if (!is_null(additional.group.sort.by)){
        additional.sort.use = additional.group.sort.by[additional.group.sort.by != i]  
      } else {
        additional.sort.use = NULL
      }
    } else {
      additional.group.use = NULL
      additional.sort.use = NULL
    }
    
    group.use <- groups.use[, c(i, additional.group.use), drop = FALSE]
    
    for(colname in colnames(group.use)){
      if (!is.factor(x = group.use[[colname]])) {
        group.use[[colname]] <- factor(x = group.use[[colname]])
      }  
    }
    
    if (draw.lines) {
      lines.width <- lines.width %||% ceiling(x = nrow(x = data.group) * 
                                                0.0025)
      placeholder.cells <- sapply(X = 1:(length(x = levels(x = group.use[[i]])) * 
                                           lines.width), FUN = function(x) {
                                             return(Seurat:::RandomName(length = 20))
                                           })
      placeholder.groups <- data.frame(rep(x = levels(x = group.use[[i]]), times = lines.width))
      group.levels <- list()
      group.levels[[i]] = levels(x = group.use[[i]])
      for (j in additional.group.use) {
        group.levels[[j]] <- levels(x = group.use[[j]])
        placeholder.groups[[j]] = NA
      }
      
      colnames(placeholder.groups) <- colnames(group.use)
      rownames(placeholder.groups) <- placeholder.cells
      
      group.use <- sapply(group.use, as.vector)
      rownames(x = group.use) <- cells
      
      group.use <- rbind(group.use, placeholder.groups)
      
      for (j in names(group.levels)) {
        group.use[[j]] <- factor(x = group.use[[j]], levels = group.levels[[j]])
      }
      
      na.data.group <- matrix(data = NA, nrow = length(x = placeholder.cells), 
                              ncol = ncol(x = data.group), dimnames = list(placeholder.cells, 
                                                                           colnames(x = data.group)))
      data.group <- rbind(data.group, na.data.group)
    }
    
    order_expr <- paste0('order(', paste(c(i, additional.sort.use), collapse=','), ')')
    group.use = with(group.use, group.use[eval(parse(text=order_expr)), , drop=F])
    
    plot <- Seurat:::SingleRasterMap(data = data.group, raster = raster, 
                                     disp.min = disp.min, disp.max = disp.max, feature.order = features, 
                                     cell.order = rownames(x = group.use), group.by = group.use[[i]])
    
    if (group.bar) {
      pbuild <- ggplot_build(plot = plot)
      group.use2 <- group.use
      cols <- list()
      na.group <- Seurat:::RandomName(length = 20)
      for (colname in rev(x = colnames(group.use2))) {
        if (colname == i) {
          colid = paste0('Identity (', colname, ')')
        } else {
          colid = colname
        }
        
        cols[[colname]] <- c(scales::hue_pal()(length(x = levels(x = group.use[[colname]]))))  
        
        if (!is_null(cols.use[[colname]])) {
          req_length = length(x = levels(group.use))
          if (length(cols.use[[colname]]) < req_length){
            warning("Cannot use provided colors for ", colname, " since there aren't enough colors.")
          } else {
            if (!is_null(names(cols.use[[colname]]))) {
              if (all(levels(group.use[[colname]]) %in% names(cols.use[[colname]]))) {
                cols[[colname]] <- as.vector(cols.use[[colname]][levels(group.use[[colname]])])
              } else {
                warning("Cannot use provided colors for ", colname, " since all levels (", paste(levels(group.use[[colname]]), collapse=","), ") are not represented.")
              }
            } else {
              cols[[colname]] <- as.vector(cols.use[[colname]])[c(1:length(x = levels(x = group.use[[colname]])))]
            }
          }
        }
        
        if (draw.lines) {
          levels(x = group.use2[[colname]]) <- c(levels(x = group.use2[[colname]]), na.group)  
          group.use2[placeholder.cells, colname] <- na.group
          cols[[colname]] <- c(cols[[colname]], "#FFFFFF")
        }
        names(x = cols[[colname]]) <- levels(x = group.use2[[colname]])
        
        y.range <- diff(x = pbuild$layout$panel_params[[1]]$y.range)
        y.pos <- max(pbuild$layout$panel_params[[1]]$y.range) + y.range * 0.015
        y.max <- y.pos + group.bar.height * y.range
        pbuild$layout$panel_params[[1]]$y.range <- c(pbuild$layout$panel_params[[1]]$y.range[1], y.max)
        
        plot <- suppressMessages(plot + 
                                   annotation_raster(raster = t(x = cols[[colname]][group.use2[[colname]]]),  xmin = -Inf, xmax = Inf, ymin = y.pos, ymax = y.max) + 
                                   annotation_custom(grob = grid::textGrob(label = colid, hjust = 0, gp = gpar(cex = 0.75)), ymin = mean(c(y.pos, y.max)), ymax = mean(c(y.pos, y.max)), xmin = Inf, xmax = Inf) +
                                   coord_cartesian(ylim = c(0, y.max), clip = "off")) 
        
        if ((colname == i) && label) {
          x.max <- max(pbuild$layout$panel_params[[1]]$x.range)
          x.divs <- pbuild$layout$panel_params[[1]]$x.major
          group.use$x <- x.divs
          label.x.pos <- tapply(X = group.use$x, INDEX = group.use[[colname]],
                                FUN = median) * x.max
          label.x.pos <- data.frame(group = names(x = label.x.pos), 
                                    label.x.pos)
          plot <- plot + geom_text(stat = "identity", 
                                   data = label.x.pos, aes_string(label = "group", 
                                                                  x = "label.x.pos"), y = y.max + y.max * 
                                     0.03 * 0.5, angle = angle, hjust = hjust, 
                                   size = size)
          plot <- suppressMessages(plot + coord_cartesian(ylim = c(0, 
                                                                   y.max + y.max * 0.002 * max(nchar(x = levels(x = group.use[[colname]]))) * 
                                                                     size), clip = "off"))
        }
      }
    }
    plot <- plot + theme(line = element_blank())
    plots[[i]] <- plot
  }
  if (combine) {
    plots <- CombinePlots(plots = plots)
  }
  return(plots)
}




pdf("Fig3d.heatmap_MP.pdf",13,9)
DoMultiBarHeatmap(MP,
                  features = markers_to_show_2$gene, 
                  group.by = 'Annotation',
                  disp.min = -2.5,disp.max = 2.5,
                  additional.group.by = 'Experimental_group',
                  size = 3,
                  label = F) + 
  scale_fill_gradient2(low = "magenta", 
                       mid = "black", 
                       high = "yellow", 
                       midpoint = 0, guide = "colourbar", aesthetics = "fill")+
  theme(axis.text.y = element_text(size = 7))
dev.off()
## Fig3e GSEA巨噬细胞

### 定义展示基因
markers_to_show3 <- markers_to_show %>%
  arrange(desc(avg_log2FC)) %>% 
  {.[!duplicated(.$gene),]} %>%
  dplyr::filter(!gene %in% MP@misc$Dump$gene,
                !grepl("ENSMPUG",gene),
                !cluster == "Unclassified",
                pct.2<0.8) %>%
  mutate(cluster = factor(cluster, levels=levels(MP))) %>%
  group_by(cluster) %>% dplyr::slice(1:50)


### 载入基因集
library("msigdbr")
library(Hmisc)
library(piano)
m_go.bp <- msigdbr(species = 'Homo sapiens', category = 'C5', subcategory = 'BP') # Gene Ontology: biologic process
pat2 = "T_HELPER|T_CELL|EOSINOPHIL|POSITIVE|NEGATIVE"
m_go.bp <- m_go.bp[!grepl(pat2, m_go.bp$gs_name),]
m_go.bp <- piano::loadGSC(m_go.bp[,c("human_gene_symbol","gs_name")])
> unlist(m_go.bp$gsc)

                          GOBP_ACTIN_FILAMENT_BASED_MOVEMENT13 
                                                     "CACNA1D" 
                          GOBP_ACTIN_FILAMENT_BASED_MOVEMENT14 
                                                     "CACNA1G" 
                          GOBP_ACTIN_FILAMENT_BASED_MOVEMENT15 
                                                    "CACNA2D1" 
                          GOBP_ACTIN_FILAMENT_BASED_MOVEMENT16 
                                                      "CACNB2" 
                          GOBP_ACTIN_FILAMENT_BASED_MOVEMENT17 
                                                      "CAMK2D" 
                          GOBP_ACTIN_FILAMENT_BASED_MOVEMENT18 
                                                        "CAV1" 
                          GOBP_ACTIN_FILAMENT_BASED_MOVEMENT19 
                                                        "CAV3" 



### GSEA富集分析
pdf("Fig3e.MP.goterm.enrichment_tight_set_MP.pdf",13,10)
par(mfrow=c(5,2),mar=c(3,35,2,1))
#m_go.bp 所有的go通路 和 包含的基因
#universe   m_go.bp和MP 中共有的基因
#goi 亚组细胞的差异基因
#Hmisc::capitalize(); 首字母变成大写
for(gr in unique(markers_to_show3$cluster)){
  goi <- markers_to_show3$gene[markers_to_show3$cluster == gr]
  universe = intersect(unique(unlist(m_go.bp$gsc)), rownames(MP)) #取交集
  x <- runGSAhyper(genes = goi, gsc = m_go.bp, universe = universe, gsSizeLim = c(1,Inf), adjMethod = "BH")
  x$resTab[order(x$resTab[,"p-value"]),][10:1,1] %>% {-log10(.)} %>% 
    {names(.) = str_replace_all(names(.),"GO_","");
    names(.) = str_replace_all(names(.),"_"," ") %>% tolower() %>% Hmisc::capitalize(); .} %>%
    barplot(horiz=T,las=1)
  mtext(gr)
}
dev.off()


> x$resTab[order(x$resTab[,"p-value"]),][10:1,1] 
                              GOBP_REGULATION_OF_RESPONSE_TO_EXTERNAL_STIMULUS 
                                                                  2.787731e-08 
                                   GOBP_REGULATION_OF_VIRAL_GENOME_REPLICATION 
                                                                  1.181171e-08 
                                      GOBP_REGULATION_OF_IMMUNE_SYSTEM_PROCESS 
                                                                  6.429214e-09 
                                                    GOBP_RESPONSE_TO_BACTERIUM 
                                                                  4.057017e-09 
                                                        GOBP_RESPONSE_TO_VIRUS 
                                                                  3.478244e-09 
                                       GOBP_DEFENSE_RESPONSE_TO_OTHER_ORGANISM 
                                                                  3.280757e-09 
                                              GOBP_REGULATION_OF_VIRAL_PROCESS 
                                                                  1.432602e-09 
横坐标-log(p)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容