MAST20005/MAST90058 课业解析

题意:

概率论与数理统计中的几个小题

解析:

问题1:使用R语言统计数据生成图像;假设服从正态分布,计算参数的极大似然估计;绘制密度直方图;绘制QQ图

一般求解极大似然估计步骤写出似然函数,再对似然函数取对数并整理,然后求导数,最后解似然方程 。

问题2:按照给出的离散随机变量计算:a.计算期望和方差、使用矩估计计算θ和计算标准差,b.求解F1、F2、F3的似然函数、最大似然估计和θ估计

离散随机变量的期望公式为E(X)=\sum_{k=1}^nX_{k} P(X_{k} ),方差公式为var(X)=E(X^2)-(E(X))^2,矩估计思想就是如果总体中有K个未知参数,可以用前 K阶样本矩估计相应的前k阶总体矩,然后利用未知参数与总体矩的函数关系,求出参数的估计量

问题5:(a):计算四个估计中哪些是µ的无偏估计;(b):无偏估计的最小方差

按照无偏估计定义计算,估计量的数学期望等于被估计参数的真实值,无偏估计的最小方差mse(\hat{\theta } )=E[(\hat{\theta } -\theta )^2]

涉及知识点:

R,随机变量,希望与方差,矩估计,极大似然估计,无偏估计

更多可加微信撩骚

MAST20005/MAST90058: Assignment 1

Due date: 11am, Friday 30 August 2019

Instructions: Questions labelled with ‘(R)’ require use of R. Please provide appropriate R commands and their output, along with sufficient explanation and interpretation of the output to demonstrate your understanding. Such R output should be presented in an integrated form together with your explanations; do not attach them as separate sheets. All other questions should be completed without reference to any R commands or output, except for looking up quantiles of distributions where necessary. Make sure you give enough explanation so your tutor can follow your reasoning if you happen to make a mistake. Please also try to be as succinct as possible. Each assignment will include marks for good presentation and for attempting all problems.

Problems:

1. (R) Let X be a random variable representing distance travelled (in kilometers) until a tire is worn out. The following are 16 observations of X:

41300 40300 43200 41100 39300 42100 42700 41300

38900 41200 44600 42300 40700 43500 39800 40400

(a) Give basic summary statistics for these data and produce a box plot. Briefly comment on center, spread and shape of the distribution.

(b) Assuming a normal distribution, compute maximum likelihood estimates for the parameters.

(c) Draw a density histogram and superimpose a pdf for a normal distribution using the estimated parameters.

(d) Draw a QQ plot to compare the data against the fitted normal distribution. Include a reference line. Comment on the fit of the model to the data.

2. A discrete random variable X has the following pmf:

A random sample of size n = 20 produced the following observations:

1, 1, 2, 3, 1, 2, 1, 3, 2, 2, 2, 1, 3, 1, 3, 1, 1, 2, 1, 2.

(a) i. Find E(X) and var(X).

ii. Find the method of moments estimator and estimate of θ.

iii. Find the standard error of this estimate.

(b) Let F1, F2 and F3 denote the sample frequencies of 1, 2 and 3, respectively.

i. Find the likelihood function in terms of F1, F2 and F3.

ii. Find that the maximum likelihood estimator and estimate of θ.

iii. Find the variance of this estimator.

(Hint: write the estimator in terms of the sample mean.)

3. Let X ∼ Unif(0, θ), a uniform distribution with an unknown endpoint θ.

(a) Suppose we have a single observation on X.

i. Find the method of moments estimator (MME) for θ and derive its mean and variance.

ii. Find the maximum likelihood estimator (MLE) for θ and derive its mean and variance.

(b) The mean square error (MSE) of an estimator is defined as MSE(\hat{\theta } )=E[(\hat{\theta}-\theta)^2]

i. Let bias\hat{(\theta )} =E\hat{(\theta )} -\theta .Show that,MSE\hat{(\theta )} =var(\hat{\theta })+bias(\hat{\theta } ) ^2

ii. Compare the MME and MLE from above in terms of their mean square errors.

iii. Find an estimator with smaller MSE than either of the above estimators.

(c) Suppose we have a random sample of size n from X.

i. Find the MME and derive its mean, variance and MSE.

ii. Find the MLE and derive its mean, variance and MSE.

iii. Consider the estimator a\hat{\theta } where \hat{\theta } is the MLE. Find a that minimises the MSE.Some information that might be useful:

E(X_{(1)})=\frac{\theta }{n+1} ,E(X_{(1)}^2)=\frac{2\theta ^2}{(n+1)(n+2)} ,E(X_{(n)})=\frac{n\theta }{n+1} ,E(X_{(n)}^2)=\frac{n\theta ^2}{n+2}

4. Let X1, . . . , Xn be a random sample from the lognormal distribution, Lognormal(µ, λ),whose pdf is:

f(x|\mu ,\lambda )=\frac{1}{x\sqrt{2\pi \lambda } } exp[-\frac{(\ln x-\mu )^2 }{2\lambda } ],x>0

(a) Show that the MLE of µ and λ are \hat{\mu } =\frac{1}{n} \sum\nolimits_{i=1}^n\ln X_{i} and \hat{\lambda } =\frac{1}{n} \sum\nolimits_{i=1}^n(\ln X_{i}-\hat{\mu }  )^2

(b) It is known that ln Xi ∼ N(µ, λ). Derive a 100 · (1 − α)% CI for λ.

(c) (R) Consider the following dataset:

0.27, 3.30, 4.58, 2.61, 0.38, 3.77, 1.11, 1.15, 4.11, 2.10,

0.07, 1.74, 2.11, 12.79, 1.85, 0.30, 0.34, 1.31, 0.14, 0.74

i. Assuming a lognormal distribution is an appropriate model for these data, compute the maximum likelihood estimate of λ and give a 95% CI.

ii. Draw a QQ plot to compare these data to the fitted lognormal distribution, Lognormal(ˆµ, λˆ). Is this model appropriate for these data?

Hint: Quantiles of the lognormal distribution can be computed using the qlnorm() function.

5. Let X_{1} , X_{2} , X_{3} X_{4} be iid rvs with E(Xi) = µ and var(Xi) = \sigma ^2 > 0, for i = 1, 2, 3, 4.

Consider the following four estimators of µ:

T1 =\frac{1}{3} (X_{1}  +X_{2} ) + \frac{1}{6} (X_{3} + X_{4} ) ,T2=\frac{1}{6} (X_{1} +2X_{2} +3X_{3} +4X_{4} )

T3=\frac{1}{4} (X_{1} +X_{2} +X_{3} +X_{4} ),T4=\frac{1}{3} (X_{1} +X_{2} +X_{3} )+\frac{1}{4} X_{4} ^2

(a) Which of these estimates are unbiased? Show your working.

(b) Among the unbiased estimators, which one has the smallest variance

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容