初级爬虫实例

爬虫实例1

import requests
from lxml import html
import pandas as pd
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def splider_dangdang(isbn):
    book_list=[]
    #目标站点

    url = 'http://search.dangdang.com/?key={}&act=input'.format(isbn)
    #print(url)
    #获取站点String类型的响应
    headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
    resp = requests.get(url,headers)
    html_data = resp.text
    # 将html页面写入本地
    # with open('dangdang.html','w',encoding='utf-8') as f:
    #     f.write(html_data)
    #提取目标站的信息
    selector = html.fromstring(html_data)
    ul_list = selector.xpath('//div[@id="search_nature_rg"]/ul/li')
    print('你好,共有{}家店铺售卖此图书'.format(len(ul_list)))
    #
    #遍历
    for li in ul_list:
        # 图书名称
        title = li.xpath('./a/@title')[0].strip()
        # print(title)
        # 图书价格
        price = li.xpath('./p[@class = "price"]/span[@class="search_now_price"]/text()')[0]
        price = float(price.replace('¥',''))
        # print(price)
        #图书购买链接
        link = li.xpath('a/@href')[0]
        # print(link)
        #图书卖家名称
        store = li.xpath('./p[@class="search_shangjia"]/a/text()')
        # if len(store) == 0:
        #     store = '当当自营'
        # else:
        #     store = store[0]
        store = '当当自营' if len(store) == 0  else store[0]
        # print(store)
        #添加每一个商家信息到列表
        book_list.append({
            'title':title,
            'price':price,
            'link':link,
            'store':store
        })

    #按照价格排序
    book_list.sort(key = lambda x:x['price'])


    #遍历booklist
    for book in book_list:
        print(book)


    #展示价格最低的前十家 柱状图
    #店铺名称
    top10_store = [book_list[i] for i in range(10)]
    # x = []
    # for store in top10_store:
    #     x.append(store['store'])
    x = [x['store'] for x in top10_store]
    y = [x['price'] for x in top10_store]

    #plt.bar(x,y)
    plt.barh(x,y)
    plt.show()
    #存储成csv文件
    df = pd.DataFrame(book_list)
    df.to_csv('dangdang.csv')

splider_dangdang('9787115428028')

爬虫实例2

import requests
from lxml import html
import pandas as pd
from matplotlib import pyplot as plt
import jieba
import string
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

def spider_douban():
    movie_list=[]

    url='https://movie.douban.com/cinema/later/chongqing/'
    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
    resp = requests.get(url, headers)
    html_data = resp.text

    selector = html.fromstring(html_data)
    div_list = selector.xpath('//div[@id="showing-soon"]/div')
    print('你好,共有{}部电影即将上映'.format(len(div_list)))

    # 遍历
    for div in div_list:
        # 电影名称
        title = div.xpath('./div/h3/a/text()')[0].strip()
        # print(title)
        # 上映日期
        date = div.xpath('./div/ul/li[1]/text()')[0]
        # date = float(date.replace('¥', ''))
        # print(date)
        # # 类型
        type = div.xpath('./div/ul/li[2]/text()')[0]
        # print(type)
        # # 上映国家
        conuntry = div.xpath('./div/ul/li[3]/text()')[0]
        # print(conuntry)
        #想看人数
        number = div.xpath('./div/ul/li/span/text()')[0]
        number = float(number.replace('人想看',''))
        # print(number)
        # 添加每一个电影信息到列表
        movie_list.append({
            'title': title,
            'date': date,
            'type': type,
            'conuntry': conuntry,
            'number':number
        })

    # 按照想看人数排序
    movie_list.sort(key=lambda x: x['number'],reverse=True)
    # 遍历movielist
    for movie in movie_list:
        print(movie)
    #最想看得五部电影
    top5_movie = [movie_list[i] for i in range(5)]
    x = [x['title'] for x in top5_movie]
    y = [x['number'] for x in top5_movie]
    plt.barh(x, y)
    plt.show()
    #绘制即将上映国家的占比图
    counts = {}
    # 提取所有上映国家
    s = [x['conuntry'] for x in div_list]
    print(s)
    # 统计上映国家与数量
    for word in s:
        counts[word] = counts.get(word, 0) + 1
    print(counts)
    # 提取上映国家
    name = counts.keys()
    print(name)
    # 提取数量
    counts_num = counts.values()
    print(counts_num)
    explode1 = [0.1, 0, 0, 0]
    plt.pie(counts_num, explode=explode1, labels=name, shadow=True, autopct='%1.1f%%')
    plt.axis('equal')
    plt.legend(loc=2)
    plt.show()

spider_douban()
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容